
This paper is included in the Proceedings of the
13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’16).
March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the
13th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’16)

is sponsored by USENIX.

An Industrial-Scale Software Defined
Internet Exchange Point

Arpit Gupta and Robert MacDavid, Princeton University; Rüdiger Birkner, ETH Zürich;
Marco Canini, Université catholique de Louvain; Nick Feamster and Jennifer Rexford,

Princeton University; Laurent Vanbever, ETH Zürich

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/gupta

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/gupta

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 1

An Industrial-Scale Software Defined Internet Exchange Point

Arpit Gupta�, Robert MacDavid�, Rüdiger Birkner†,
Marco Canini�, Nick Feamster�, Jennifer Rexford�, Laurent Vanbever†

�Princeton University †ETH Zürich �Université catholique de Louvain
http://sdx.cs.princeton.edu/

Abstract
Software-Defined Internet Exchange Points (SDXes)
promise to significantly increase the flexibility and func-
tion of interdomain traffic delivery on the Internet. Unfor-
tunately, current SDX designs cannot yet achieve the scale
required for large Internet exchange points (IXPs), which
can host hundreds of participants exchanging traffic for
hundreds of thousands of prefixes. Existing platforms are
indeed too slow and inefficient to operate at this scale, typ-
ically requiring minutes to compile policies and millions
of forwarding rules in the data plane.

We motivate, design, and implement iSDX, the first
SDX architecture that can operate at the scale of the
largest IXPs. We show that iSDX reduces both policy
compilation time and forwarding table size by two orders
of magnitude compared to current state-of-the-art SDX
controllers. Our evaluation against a trace from one of the
largest IXPs in the world found that iSDX can compile
a realistic set of policies for 500 IXP participants in less
than three seconds. Our public release of iSDX, complete
with tutorials and documentation, is already spurring early
adoption in operational networks.

1 Introduction
Software-Defined Networking (SDN) has reshaped the
design of many networks and is poised to enable new ca-
pabilities in interdomain traffic delivery. A natural place
for this evolution to occur is at Internet exchange points
(IXPs), which are becoming increasingly prevalent, partic-
ularly in developing regions. Because many Autonomous
Systems (ASes) interconnect at IXPs, introducing flexi-
ble control at these locations makes it easier for them to
control how traffic is exchanged in a direct, and more fine-
grained way. In previous work [14], we offered an initial
design of a Software-Defined Internet Exchange Point
(SDX) and showed how introducing SDN functionality at
even a single IXP can catalyze new traffic-management ca-
pabilities, ranging from better inbound traffic engineering
to application-specific peering and server load balancing.

Since we introduced SDX [13], many organizations
and networks have built different versions of this con-
cept [4, 14, 22, 23, 35]. Yet, many of these deployments

remain relatively small-scale or limited in scope because
current switch hardware cannot support large forwarding
tables, and because efficiently combining the policies of
independently operated networks as routes and policies
change presents a significant scaling challenge.

In this paper, we tackle these scalability challenges with
the design and implementation of iSDX, an industrial-
scale SDX that can support interconnection for the largest
IXPs on the Internet today. We design mechanisms that
allow the number of participants, BGP routes, and SDN
policies to scale, even for the limited table sizes of today’s
switches. We develop algorithms for compiling traffic
control policies at the scale and speed that networks that
such an IXP would require. We have implemented these
algorithms in Ryu [31], a widely used SDN controller. We
have released our implementation to the public with doc-
umentation and tutorials; one large government agency
has tested iSDX with hardware switches and is using our
controller as the basis for a deployment.

In the design and implementation of iSDX, we address
two scalability challenges that are fundamental to any
SDX design. The first challenge relates to how the control
plane combines the policies of individual networks into
forwarding entries in the data plane. Compiling traffic
control policies expressed in a higher-level policy lan-
guage to forwarding table entries can be slow, since this
process involves composing the policies of multiple par-
ticipants into a single coherent set of forwarding-table
entries. This slow process is exacerbated by the fact that
any change to BGP routing may change forwarding be-
havior; existing SDX designs trigger recompilation every
time a BGP best route changes, which is not tractable in
practice. The main scalability challenge thus involves ef-
ficiently composing the policies of individual participants,
and ensuring that the need to recompile the forwarding ta-
ble entries is completely decoupled from (frequent) BGP
routing changes.

To scale the control plane, we introduce a new design
that exploits the fact that each participant expresses its
SDN policy independently, which implies that each par-
ticipant can also compile its SDN policies independently,
as well. This change enables more aggressive compres-

2 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

sion of the forwarding tables than is possible when all
of the policies are compressed together and also allows
for participant policies to be compiled in parallel. As a
result, iSDX compiles the forwarding tables two orders of
magnitude faster than the existing approaches; the tables
are also two orders of magnitude smaller, making them
suitable for practical hardware-switch deployments.

The second challenge relates to the data plane: the
number of forwarding table entries that might go into
the forwarding table at an IXP switch can quickly grow
unacceptably large. Part of the challenge results from
the fact that the policies that each network writes have to
be consistent with the BGP routes that each participant
advertises, to ensure that an SDN policy cannot cause
the switch to forward traffic on a path that was never
advertised in BGP. This process significantly inflates the
number of forwarding table entries in the switch and is a
considerable deployment hurdle. Large industrial-scale
IXPs can have over 700 participants exchanging traffic for
hundreds of thousands of prefixes; combined with the fact
that each of these participants may now introduce policies
for specific traffic flows, the number of forwarding table
entries quickly becomes intractable. Although our initial
design [14] reduced the size of the forwarding tables, we
show that the size of these tables remained prohibitively
large for industrial-scale deployments.

To address the data-plane challenge, we introduce an
efficient encoding mechanism where the IXP fabric for-
wards the packet based on an opaque tag that resides in
the packet’s destination MAC field. This tag explicitly
encodes both the next-hop for the packet and the set of
ASes that advertise BGP routes for the packet’s destina-
tion, thus making it possible to remove this information
from the switch tables entirely. This separation prevents
BGP routing updates from triggering recomputation and
recompilation of the forwarding table entries. Using fea-
tures in OpenFlow 1.3 that support matching on fields
with arbitrary bitmasks, we significantly reduce the size
of this table by grouping tags with common bitmasks.

In summary, we present the following contributions:

• The design and implementation of iSDX, the first
SDX controller that scales to large industrial-scale
IXPs. We devised new mechanisms for distributing
control-plane computation, compressing the forward-
ing tables, and responding to BGP routing changes,
reducing the compilation time and forwarding table
size by several orders of magnitude. (Sections 3–5)

• A public, open-source implementation of iSDX on
Github [16]; the system is based on Ryu, a widely
used SDN controller, and is accompanied with tuto-
rials and instructions that have already helped spur
early adoption. (Section 6)

• An extensive evaluation of iSDX’s scalability char-
acteristics using a trace-driven evaluation from one
of the largest IXPs in the world. Our evaluation
both demonstrates that iSDX can scale to the largest
IXPs and provides insight into specifically how (and
to what extent) each of our optimizations and algo-
rithms helps iSDX scale. (Section 7)

We survey related work in Section 8 and conclude in
Section 9 with a discussion of open issues in SDX design
and avenues for future work.

2 SDX: Background & Scaling Challenges
We begin with a background on our previous SDX de-
signs [14, 35] and a demonstration that these designs can-
not scale to industrial IXPs.

2.1 Background
Brief overview of SDX. An SDX is an IXP consisting
of a programmable SDN fabric, coupled with a BGP
route server (which allows IXP participants to exchange
reachability information via BGP) and an SDN controller
(which allows participants to override default BGP rout-
ing behavior with more fine-grained SDN policies). The
SDX controller provides each participant AS with the ab-
straction of a dedicated switch that it can program using
match-action policies to control traffic flows. Participants
may express SDN policies on both their inbound and out-
bound traffic; the SDX controller ensures that no SDN
policy results in traffic being forwarded to a neighboring
AS that did not advertise a BGP route for the prefix that
matches the packet’s destination IP address.

Each participant runs an SDN control application on
the central controller and has its border router exchange
BGP update messages with the IXP’s route server. The
SDN controller combines the SDN policies from all par-
ticipants, reconciles the resulting policy with the BGP
routing information, and computes and installs the result-
ing forwarding table entries in the IXP fabric. To avoid
having forwarding entries for all prefixes, our original
SDX design relied on the participants’ border routers to
tag packets entering the IXP fabric with a forwarding
equivalence class of destination prefixes with the same
forwarding action. For backwards compatibility, the tag
was the destination MAC address, set in response to the
border router sending an ARP query for the next-hop IP
address from the BGP route advertisement. The SDX
route server computed a different (virtual) next-hop IP ad-
dress for each equivalence class of prefixes to trigger the
border router to use a common MAC address for packets
sent to the group of destination IP addresses.
Example operation. Figure 1a shows an example topol-
ogy with five participants; Figure 1b shows the routes
advertised to A and B and the BGP routes that they select

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 3

AS C

P1,P2,
P3,P4

P1,P2,P3,
P4,P5

P4,P5

Control
Plane

IXP
Fabric

AS D

AS EAS B
router

AS A
router

announces

announces

announces

(a) Example Topology

A B
P1 C, D C, D
P2 C, D C, D
P3 C, D C, D
P4 C, D, E C, D, E
P5 D, E D, E

(b) Reachability and Next Hops (in bold) for AS A and AS B

Figure 1: An example with five IXP participants. Two partici-
pants AS A and AS B have outbound policies. The other three
advertise five IP prefixes to both these participants.

for each prefix (in bold). Both A and B express outbound
policies. To ensure that SDN policies cause the IXP to for-
ward traffic in a way that is consistent with the advertised
BGP routes, the SDX controller augments each outbound
policy with the reachability information. Intuitively, aug-
mentation restricts forwarding policies so that traffic is
forwarded only on paths that correspond to BGP routes
that the participant has learned.

For example, suppose that A has the following out-
bound policies:
dPort=443→ fwd(C)

dPort=22→ fwd(C)

dPort=80∧sIp=10/24→ fwd(D)

dPort=80∧sIp=40/24→ fwd(D)

These policies forward traffic based on values of packet
header fields, overriding BGP behavior. For instance, the
first policy specifies HTTPS traffic (dPort=443) should
be forwarded to C. Without augmentation, A would also
forward the HTTPS traffic destined for prefix P5 to C,
even though C never advertised a path for P5 to A. In our
example, A’s policies are then augmented as follows:
dIp ∈ {P1,P2,P3,P4}∧dPort=443→ fwd(C)

dIp ∈ {P1,P2,P3,P4}∧dPort=22→ fwd(C)

dIp ∈ {P1,P2,P3,P4,P5}∧dPort=80∧sIp=10/24→ fwd(D)

dIp ∈ {P1,P2,P3,P4,P5} ∧ dPort=80∧ sIp=40/24 → fwd(D)

Augmentation enforces that the destination IP (dIp)
matches one of the prefixes that either C or D announces
to A, therefore ensuring congruence with BGP routing.
Observe that a straightforward realization of this policy
requires one distinct match-action rule for each of the five
prefixes. Hence, the augmented policies would result in

18 forwarding rules instead of the four rules necessary to
implement the original policy.

Similarly, if B’s outbound policy is:
dPort=443→ fwd(E)

the SDX controller augments the policy, doubling the
number of necessary rules, as follows:
dIp ∈ {P4,P5}∧dPort=443→ fwd(E)

To better illustrate the scalability challenge, we capture
the expansion of the switch forwarding tables using an
augmentation matrix (Figure 2, left matrix). In this matrix,
a row labeled as SDNX ,Y refers to an SDN policy written
by X that results in traffic being forwarded to Y , while
columns refer to IP prefixes. The value of an element
(i, j) indicates the number of forwarding table entries
(i.e., match-action rules) in participant i’s policy where
prefix j appears. Similarly, BGPX ,Y indicates whether X
selects Y as the next hop for some BGP-advertised prefix,
and element (i, j) is 1 if participant A selects the route
advertised by B for the prefix corresponding to column j.

For example, the element in row SDNA,C and column
P1 reflects the fact there are two forwarding table en-
tries that correspond to prefix P1: one for traffic with
dPort=443 and one for traffic with dPort=22. The
same applies for columns P2, P3, and P4. We can deter-
mine the total number of forwarding table entries (and
the number contributed by each participant) by summing
up the corresponding elements in the matrix. We will
use this notation to describe compression techniques (and
their effects) throughout the paper.
Previously developed compression techniques. Intu-
itively, the number of forwarding rules increases as the
number of SDX participants with outbound policies in-
creases (more rows) and as forwarding policies are de-
fined for additional prefixes (more columns). To limit the
number of forwarding rules, the original SDX design [14]
identified the Minimum Disjoint Set (MDS) of prefixes
(columns) with the same SDN policies and grouped each
equivalent set into a Forwarding Equivalence Class (FEC).
In the rest of this paper, we refer to this algorithm as MDS
compression. For instance, in the preceding example, pre-
fixes P1,P2,P3 belong to the same FEC, as indicated by
the boldface entries in the left matrix in Figure 2. MDS
compression reduces the number of forwarding table en-
tries by assigning a virtual next-hop to each FEC, rather
than to each individual prefix. Figure 2 also depicts the
number of forwarding table entries before and after MDS
compression. In particular, MDS compression reduces
the number of columns from the total number of prefixes
(5) to the number of FECs (3).

2.2 Existing SDX Designs Do Not Scale
In this section, we show that existing SDX designs do
not scale to the demands of industrial-scale IXPs. We
explore two different state-of-the-art SDX designs: (1) an

3

4 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Policy CompressionAugmentation Composition Compilation

Control Plane Updates Data Plane Updates

P1 P2 P3 P4 P5

SDNA,C 2 2 2 2 0

SDNA,D 2 2 2 2 2

SDNB,E 0 0 0 1 1

BGPA,D 1 1 1 1 0

BGPA,E 0 0 0 0 1

BGPB,C 1 1 1 0 0

BGPB,E 0 0 0 1 1

{P1, P2, P3} P4 P5

SDNA,C 2 2 0

SDNA,D 2 2 2

SDNB,E 0 1 1

BGPA,D 1 1 0

BGPA,E 0 0 1

BGPB,C 1 0 0

BGPB,E 0 1 1

PolA
PolB

Policies

BGP

13
5

23
7

4
1

Total Outbound Rules of A
Total Outbound Rules of B

Forwarding Actions of B

Forwarding Actions of A

Forwarding Equivalence

Figure 2: Matrix representation of AS A and AS B’s outbound policies after augmentation and policy compression, as well as the
stages of compression and composition in the original SDX design; the composition stage is grey to indicate that the iSDX eliminates
this stage entirely.

100 200 300 400 500

Participants

103

104

105

106

107

108

109

Fo
rw

ar
di

ng
Ta

bl
e

E
nt

rie
s

Unoptimized
MDS SDX-Central

iSDX
Optimal

(a) Number of Forwarding Table Entries.

100 200 300 400 500

Participants

0

8000

16000

24000

32000

Fl
ow

-M
od

s

MDS SDX-Central
Unoptimized

iSDX

(b) Data-Plane Update Rate.

Figure 3: Existing SDX designs can require to maintain millions of forwarding entries (left) and update 10,000s of updates per
second (right). Such numbers are far from current hardware capabilities. As an illustration, the dashed line highlights the hardware
capabilities of state-of-the-art SDN switches [26].

unoptimized SDX that does not compress policies, such as
that used by Google’s Cardigan SDX [38]; (2) a simple,
centralized SDX controller that applies MDS compres-
sion, as in our previous work [14]. We also preview the
results from this paper, showing that our new architecture,
iSDX, reduces the compilation time, number of forward-
ing table entries, and data-plane update rate by more than
two orders of magnitude, thus making operation in an
industrial-scale IXP practical. In each case, we evalu-
ate the time to compute the forwarding table entries, the
number of forwarding table entries, and the rate at which
changes in BGP routing information induce changes in
the forwarding table entries. We use a real BGP trace
from one the largest IXPs in the world for this evaluation.
Section 7 provides details about our experiment setup.

Unoptimized Centralized MDS-SDX [14] iSDX
Time (s) 4572.15 1740.93 2.82

Table 1: Median time (for 60 trials) to compute forwarding
table entries for an IXP with 500 participants. The iSDX column
shows the results for this paper.

Existing SDX designs can take minutes to compute
forwarding table entries. Table 1 shows the median
time over 60 trials to compute forwarding table entries
for an IXP with 500 participants for two state-of-the-art
SDX designs, as well as for iSDX, the design that we
present in this paper. iSDX reduces the average time to

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 5

compute forwarding table entries from 30 minutes to less
than three seconds.
Existing SDX designs can require millions of forward-
ing table entries. Figure 3a shows how the number of
forwarding table entries increases as the number of par-
ticipants increases from 100 to 500. MDS compression
reduces the number of entries by an order of magnitude,
but the forwarding table is still too large for even the most
high-end hardware switches, which have about 100,000
TCAM entries [26]. The iSDX design ensures that the
number of forwarding table entries is approximately the
number of SDN policies that each participant expresses
(shown as “optimal” in Figure 3a), thus allowing the num-
ber of forwarding table entries to be in the tens of thou-
sands, rather than tens of millions.
Existing SDX designs require hundreds of thousands
updates per second to the data plane. Figure 3b shows
the worst-case data-plane update rate that an SDX con-
troller must sustain to remain consistent with existing
BGP updates. The update rates of existing designs are sev-
eral orders of magnitude above what even top-of-the-line
hardware switches can support [26] (i.e., about 2,500 up-
dates per second). In constrast, iSDX usually eliminates
forwarding table updates in response to BGP updates.

3 Design of an Industrial-Scale SDX
We introduce the design of an industrial-scale SDX
(iSDX), which relies on two principles to reduce com-
pilation time, the number of forwarding table entries, and
forwarding table update rates.

3.1 Partition Control-Plane Computation

Problem: Considering all policies together reduces
opportunities for compression. Centralized SDX con-
trollers perform control-plane computations for all IXP
participants. Doing so not only forces the controller to
process a large single combined policy, it also creates
dependencies between the policies of individual IXP par-
ticipants. For example, a change to any participant’s
inbound policy triggers the recompilation of the policies
of all participants who forward traffic to that participant.
This process requires significant computation and also
involves many (and frequent) updates to the forwarding
table entries at the IXP switch.
Solution: Partition computation across participants.
We solve this problem by partitioning the control-plane
computation across participants. Doing so ensures that
participant policies stay independent from each other. In
addition, partitioning the computation enables more effi-
cient policy compression by operating on smaller state,
reducing both computation time and data plane state. Par-
titioning the control-plane computation among partici-
pants also enables policy compilation to scale out as the

Policy CompressionAugmentation Compilation

Control Plane Updates Data Plane Updates

P1 P2 P3 P4 P5

SDNA,C 2 2 2 2 0

SDNA,D 2 2 2 2 2

BGPA,D 1 1 1 1 0

BGPA,E 0 0 0 0 1

{P1, P2, P3, P4} P5

SDNA,C 2 0

SDNA,D 2 2

BGPA,D 1 0

BGPA,E 0 1

BGP

Policy A
4
1

23
7

8
3

Forwarding Actions of A

Total Outbound Rules of A
Total Outbound Rules of B

Figure 4: Partitioning the Control-Plane Computation.

number of IXP participants and routes grows. Section 4
details this approach.

3.2 Decouple BGP and SDN Forwarding

Problem: Frequent BGP updates trigger recompila-
tion. Coupling BGP and SDN policies during compilation
inflates the number of resulting forwarding table entries
and also implies that any change to BGP routing triggers
recompilation of the forwarding table entries, which is
costly. Our previous design partially addressed this prob-
lem, but this design still requires millions of flow rules in
the data plane as shown in Figure 3a. Additionally, our
previous approach to reduce the number of forwarding
table entries increases the forwarding table update rates,
since any change in BGP routing may affect how entries
are compressed.

Solution: Encode BGP reachability information in a
separate tag. We address this problem by encoding all
information about BGP best routes (and corresponding
next hops) into the destination MAC addresses, which
reduces the number of forwarding table entries, as well as
the number of changes to the forwarding table when BGP
routes change. Section 5 discusses our approach in detail.

4 Partitioning Control-Plane Computation
To achieve greater compression of the rule matrix, we
need to reduce the constraints that determine which pre-
fixes belong to the same FEC. Rather than computing
one set of equivalence classes for the entire SDX, iSDX
computes separate FECs for each participant. We first
discuss how partitioning by participant reduces the size of
the rule matrices and, as a side benefit, allows for faster
computation. We then describe how we use multiple
match-action tables and ARP relays to further improve
scalability, setting the stage for further optimizations in
Section 5.

4.1 Partitioning the FEC Computation
Figure 4 shows similar compression and compilation steps
as the ones done in Figure 2, with the important distinction
that it takes place on behalf of participant A only; similar
operations take place on behalf of other participants. Fig-

5

6 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

IXP Fabric

IXP Controller

C1’s Router

C2’s Router

A’s Router

e
a

match
dstmac

modify
dstmac

Inbound Table

… …

C C2
VMAC-1

Packet

e
a

match
srcmac, VMAC

modify
dstmac

Outbound Table

… …

SRC_A CVMAC-1

C’s ControllerA’s Controller

A C

e
a

match
inport

mod srcmac
and forward

Input Table

inport_A

… …
SRC_A

e
a

match
dstmac

write dstmac,
output packet

Output Table

… …

C1

C2

Fwd C1

Fwd C2

C1_MAC

C2_MAC

Forwarding RulesSteering Rules

A’s Outbound Rules C’s Inbound Rules

Fabric Manager

Figure 5: Distributing forwarding rules and tags.

ure 4 highlights two important benefits of partitioning the
computation of FEC across participants:

• Computing separately for each participant reduces
the number of next-hops, leading to a smaller number
of larger forwarding equivalence classes. In Figure 4,
the number of columns reduces from five to two.

• The computational complexity of computing FECs
is proportional to the number of rows times the num-
ber of columns in the rule matrix. Now, each rule
matrix is smaller, and the computation for different
participants can be performed in parallel.

In practice, the SDX controller could compute the FECs
for each participant, or each participant could run its own
controller for computing its own FECs. In the rest of the
paper, we assume each participant runs its own controller
for computing its FECs.

4.2 Distributing Forwarding Rules & Tags
In addition to computing the FECs for each participant,
the iSDX must realize these policies in the data plane.
Decomposing the IXP fabric into four tables: To for-
ward traffic correctly, an SDX must combine the inbound
and outbound policies for all of the participants. Repre-
senting the combination of policies in a single forwarding
table, as in an OpenFlow 1.0 switch, would be extremely
expensive. Some existing SDN controllers perform this
type of composition [25, 33]—essentially computing a
cross product of the constituent policies—and, in fact, our
original SDX followed this approach [14]. Computing
the cross product leads to an explosion in the number of
rules, and significant recomputation whenever one of the
participant policies changes.

Fortunately, modern switches have multiple stages of
match-action tables, and modern IXPs consist of multiple
switches. The iSDX design capitalizes on this trend. The
main challenge is to determine how to most effectively
map policies to the underlying tables.

A strawman solution would be to use a two-table
pipeline, where packets first enter an outbound table im-

plementing outbound policies for the participant where
the traffic originates, followed by an inbound table that
applies inbound policies for the participant that receives
the traffic as it leaves the IXP fabric. Using only two
tables, however, would mean that some of these tables
would need to be much larger; for example, the outbound
table would need to represent the cross product of all in-
put ports and outbound policies. Additionally, using only
two tables makes it more difficult to scale-out the iSDX
as the number of participants grows.

As such, our design incorporates an input table, which
handles all the incoming traffic and tags it with a new
source MAC address based on the packet’s incoming port,
so that packets can be multiplexed to the outbound table.
As the packet leaves the iSDX, it passes through an output
table, which looks up the packet’s tag in the destination
MAC field and both performs the appropriate action and
rewrites the packet’s destination MAC address. Separate
input and output tables provide a cleaner separation of
function between the modules that write to each table,
avoid cross-product explosion of policies, and facilitates
scale-out by allowing the inbound and outbound tables to
reside on multiple physical switches in the IXP infrastruc-
ture. (Such scale-out techniques are beyond of the scope
of this paper.)

Figure 5 shows how the IXP fabric forwards a packet,
while distributing the compilation and compression of
policies across separate tables. Based on the destination
IP address of the packet, suppose that AS A’s controller
selects a route to the packet’s destination via AS D; this
route will correspond to a next-hop IP address. AS A’s
controller will make a BGP announcement advertising
this path. AS A’s router will issue an ARP query for the
advertised next-hop IP address, and then AS A’s controller
will respond via the ARP relay setting a virtual MAC ad-
dress (in Figure 5, “VMAC-1”) as the packet’s destination
MAC address.

When the packet enters the IXP fabric, the input table
matches on the packet’s incoming port and rewrites the

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 7

source MAC address to indicate that the packet arrived
from AS A (“SRC A”). If A has an outbound policy, the
packet will match on (“SRC A”), and the outbound ta-
ble will apply an outbound policy. If A has no outbound
policy for this packet, the input table forwards the packet
directly to the inbound table without changing the des-
tination MAC. This bypass is not strictly necessary but
avoids an additional lookup for packets that do not have a
corresponding outbound policy. A’s outbound policy thus
overwrites default BGP forwarding decision and modifies
the destination MAC address to “C”. The inbound table
rewrites the tag to correspond to the final disposition of
the packet (“C1” or “C2”), which is implemented in the
output table. The output table also rewrites the tag to the
receiver’s physical MAC address before forwarding.

Reducing ARP traffic overhead. Partitioning the FEC
computation reduces the number of FECs per participant,
but may increase the total number of FECs across all
participants (i.e., the number of columns across all rule
matrices). To reduce the size of the forwarding tables,
each data packet carries a tag (i.e., a virtual MAC address)
that identifies its FEC. The participant’s border router
learns the virtual MAC address through an ARP query
on the BGP next-hop IP address of the associated routes.
The use of broadcast for ARP traffic, combined with the
larger number of next-hop IP addresses, could overwhelm
the border routers and the IXP fabric. In fact, today’s
IXPs are already vulnerable to high ARP overheads [5].

Fortunately, we can easily reduce the overhead of ARP
queries and responses, because each participant needs to
learn about only the virtual MAC addresses for its own
FECs. As such, the SDX can turn ARP traffic into unicast
traffic by installing the appropriate rules for handling
ARP traffic in switches. In particular, each participant’s
controller broadcasts a gratuitous ARP response for every
virtual next-hop IP address it uses; rules in the IXP’s
fabric recognize the gratuitous ARP broadcasts and ensure
that they are forwarded only to the relevant participant’s
routers. Participants’ routers can still issue ARP queries
to map IP addresses to virtual MAC addresses, but the
fabric intercepts these queries and redirects them to an
ARP relay to avoid overwhelming other routers.

5 Decoupling SDN Policies from Routing
To ensure correctness, any SDX platform must combine
SDN policies with dynamic BGP state: which participants
have routes to each prefix (i.e., valid next-hop ASes for
a packet with a given destination prefix), as well as the
next-hop AS to use for each prefix (i.e., the outcome of
BGP decision process). The large number of prefixes and
participants creates scalability challenges with respect
to forwarding table sizes and update rates, before SDN
policies even enter the equation.

5.1 Idea: Statically Encode Routing
To reduce the number of rules and updates, we develop a
new encoding scheme that is analogous to source routing:
The IXP fabric matches on a tag that is provisioned by a
participant’s SDX controller. To implement this approach,
we optimize the tag that the fabric uses to forward traffic
(as described in Section 4) to carry information about both
the next-hop AS for the packet (as determined by the best
BGP route) and the ASes who have advertised routes to
the packet’s destination prefix. If no SDN policy matches
a packet, iSDX can simply match on the next-hop AS
bits of the tag to make a default forwarding decision. As
before, the sender discovers this tag via ARP.

To implement default forwarding, the IXP fabric main-
tains static entries for each next-hop AS which forward
to participants based upon the next-hop AS bits of the tag.
When the best BGP routes change, the entries need not
change, rather the next-hop AS bits of the tags change.

To account for changes in available routes, SDN poli-
cies that reroute to some participant X confirm whether
X has advertised a route before forwarding. The method
of checking for X in the tags is static, meaning that in
contrast to our previous design [14], BGP updates induce
zero updates in the IXP switch data plane. Instead, BGP
updates result in tag changes, and the participant’s border
router learns these dynamic tags via ARP.

5.2 Encoding Next-Hop and Reachability
We now describe how iSDX embeds both the next-hop
AS (i.e., from the best BGP route) and the reachability
information (i.e., the set of ASes that advertise routes to
some prefix) into this tag.

5.2.1 Next-hop encoding

The next-hop information denotes the default next-hop
AS for a packet, as determined by BGP. In the example
from Section 2.1, A’s next-hop AS for traffic to P1 as de-
termined by the best BGP route is D. iSDX allocates bits
from the tag (i.e., the virtual MAC, which is written into
the destination MAC of the packet’s header) to denote this
next-hop. If no SDN policy overrides this default, iSDX
applies a default priority prefix-based match on these
bits to direct traffic to the corresponding next-hop.1 This
approach reduces the forwarding table entries in a partici-
pant’s outbound table, since additional entries for default
BGP forwarding no longer need to be represented as dis-
tinct entries in the forwarding table. Encoding the next
hop information in this way requires lg(N) bits, where N
is the number of IXP participants. At a large IXP with
up to 1024 participants, ten bits can encode information
about default next-hop ASes, leaving 37 bits.2

1The OpenFlow 1.3 standard supports this feature [27], which is
already implemented in many hardware switches (e.g., [26, 28]).

2One of the 48 bits in the MAC header is reserved for multicast.

7

8 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Reachability Next Hop

VMAC
C D

Outbound Table

&& dPort=443

&& dPort=22

&& dPort=80 && sIP=10/24

&& dPort=80 && sIP=40/24

Match Modify DstMac

Output Table

Match Action

Fwd(C)

Fwd(D)

Fwd(E)

A's Border Router

P1

P2

P3

P4

P5

Prefix VMAC

IXP Fabric

Input
Table

Inbound
Table

Figure 6: How AS A’s controller uses reachability encoding to reduce the number of flow rules.

5.2.2 Reachability encoding

We now explain how to encode reachability information
into the remaining 37 bits of the destination MAC address.
We first present a strawman approach that illustrates the
intuition before describing the scalable encoding.

Strawman encoding. Suppose that for a given tag, the
i-th bit is 1 if that participant learns a BGP route to the
corresponding prefix (or prefixes) via next-hop AS i. Such
an encoding would allow the IXP fabric to efficiently
determine whether some participant could forward traffic
to some next-hop AS i, for any i at the IXP. Considering
the example in Section 2.1, A’s outbound policies are:
dMac = XX1X...X∧dPort=443→ fwd(C)

dMac = XX1X...X∧dPort=22→ fwd(C)

dMac = XXX1X..X∧dPort=80∧sIp=10/24→ fwd(D)

dMac = XXX1X..X∧dPort=80∧sIp=40/24→ fwd(D)

where X stands for a wildcard match (0 or 1). This en-
coding ensures correct interoperation with BGP, yet we
use just four forwarding table entries, which is fewer than
the 18 required using augmentation (from the original
example in Section 2).

Figure 6 explains how this approach reduces the num-
ber of forwarding table entries in the switch fabric. When
a packet arrives, its virtual MAC encodes both (1) which
ASes have advertised a BGP route for the packet’s des-
tination (“reachability”) and (2) the next-hop participant
corresponding to the best BGP route (“next hop”). Sup-
pose that a packet is destined for P1 from A; in this case,
A’s border router will affix the virtual MAC as shown.
If that virtual MAC does not match any forwarding ta-
ble entries in the outbound table, the packet will simply
be forwarded to the appropriate default next hop (in this
case, D) based on the next-hop encoding. This process
makes it possible for the switch to forward default BGP
traffic without installing any rules in the outbound table,
significantly reducing the size of this table.

Hierarchical encoding. The approach consumes one bit
per IXP participant, allowing at most for only 37 IXP
participants. To encode more participant ASes in these
37 bits, we divide this bitspace hierarchically. Suppose
that an IXP participant has SDN policies that refer to
N other IXP participants (i.e., possible next-hop ASes).
Then, all of these N participants need to be efficiently

IXP Fabric

Central Services

IXP Controller

BGP Relay

ARP Relay

Participant Controller

ARP Handler

BGP Handler

RIBs

Fabric Manager

BGP Updates

ARP Requests

Forwarding Table Entries

Update Handler

Policy Compression Library

Figure 7: Implementation of iSDX. It has five main modules:
(1) IXP controller, (2) participant SDN controller, (3) ARP relay,
(4) BGP relay, and (5) fabric manager.

encoded in the 37-bit space, B. We aim to create W
bitmasks {B1,B2, . . . ,BW} that minimize the total number
of forwarding table entries, subject to the limitations of
the total length of the bitmask.

Given M prefixes and N IXP participants, we begin
with M bitmasks, where each bitmask encodes some set
of participants that advertise routes to some prefix pi.
We greedily merge pairs of sets that have at least one
common participant, and we always merge two sets if one
is a subset of the other. Iterating over all feasible merges
has worst-case complexity O(M2); and there may be as
many as M − 1 merge actions in the worst case. Each
merge has complexity O(N), which gives us an overall
worst-case running time complexity of O(M3N).

Given 37 spare bits in the destination MAC for reacha-
bility encoding, if a participant has defined SDN policies
for more that 37 participants who advertise the same pre-
fix, then the number of bits required to encode the reach-
ability information will exceed 37. Our analysis using a
dataset from one of the largest IXPs in the world found
that the maximum number of participants advertising the
same prefix was only 27, implying that largest bitmask
that this encoding scheme would require is 27 bits. There
were 62 total bitmasks, meaning 6 bits are required to
encode the ID of a bitmask, requiring a total of 33 bits
for the encoding. Using a different (or custom) field in
a packet header might also be possible if these numbers
grow in the future.

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 9

6 Implementation
We now describe an implementation of iSDX, as shown
in Figure 7. Our Python-based implementation has about
5,000 lines of code. Source code and tutorials are publicly
available on Github [16]. We have also provided instruc-
tions for deploying iSDX on hardware switches [17]; one
large government agency has successfully done so with
the Quanta LY2 switch [28]. About 300 students used an
earlier version of iSDX in the Coursera SDN course [8].

The fabric manager is based on Ryu [31]. It listens
for forwarding table modification instructions from the
participant controllers and the IXP controller and installs
the changes in the switch fabric. The fabric manager ab-
stracts the details of the underlying switch hardware and
OpenFlow messages from the participant and the IXP con-
trollers and also ensures isolation between participants.

The IXP controller installs forwarding table entries
in the input and output tables in the switch fabric via
the fabric manager. Because all of these rules are static,
they are computed only at initialization. Moreover, the
IXP controller handles ARP queries and replies in the
fabric and ensures that these messages are forwarded to
the respective participants’ controllers via ARP relay.

The BGP relay is based on ExaBGP [11] and is similar
to a BGP route server in terms of establishing peering ses-
sions with the border routers. Unlike a route server, it does
not perform any route selection. Instead, it multiplexes
all BGP routes to the participant controllers.

Each participant SDN controller computes a com-
pressed set of forwarding table entries, which are installed
into the inbound and outbound tables via the fabric man-
ager, and continuously updates the entries in response
to the changes in SDN policies and BGP updates. The
participant controller receives BGP updates from the BGP
relay. It processes the incoming BGP updates by select-
ing the best route and updating the RIBs. We developed
APIs to use either of MongoDB [24], Cassandra [2] and
SQLite [34] for storing participants’ RIBs. We used the
MongoDB (in-memory) for the evaluation in Section 7.
The participant controller also generates BGP announce-
ments destined to the border routers of this participant,
which are sent to the routers via the BGP relay.

Each participant controller’s update handler deter-
mines whether the inbound and outbound tables need to
be updated, as well as whether new gratuitous ARP mes-
sages must be sent to the participant’s border routers to
update any virtual destination MAC addresses. The con-
troller receives ARP requests from the participant’s border
routers via the ARP handler and determines the corre-
sponding ARP reply. The controller also receives SDN
policy updates from the network operators in the form of
addition and removal lists. Both the update handler and
the ARP handler use a policy compression library that we

MDS NH Encoding Reachability Encoding
iSDX-D � � �

iSDX-N � � �

iSDX-R � � �

Table 2: Three distributed SDX Controllers.

implemented, which provides the mapping between IP
prefixes and virtual next-hop IPs (corresponding to best
BGP routes), and between virtual next-hop IPs and virtual
destination MAC addresses (i.e., an ARP table).

7 Evaluation
We now demonstrate that iSDX can scale to the forward-
ing table size, data plane update rate, and control plane
computation requirements of an industrial-scale IXP. Ta-
ble 2 summarizes the three different iSDX designs that
we compare to previous approaches: iSDX-D applies
the same MDS compression technique as in our previous
work [14], but with tables distributed across participants;
iSDX-N additionally encodes the next-hop AS in the tag;
and iSDX-R encodes both the next-hop AS and BGP
reachability information in the tag.

Table 3 summarizes our results: iSDX reduces the num-
ber of forwarding table entries for an industrial-scale
IXP by three orders of magnitude as compared to an un-
optimized, centralized SDX design; and by more than
two orders of magnitude over the state-of-the-art SDX
design [14]. This section explains these results in detail.

7.1 Experiment Setup
We use data sets from one of the largest IXPs worldwide,
which interconnects more than 600 participants, who peer
with one another via a BGP route server [29]. We had ac-
cess to the RIB table dump collected from the IXP’s route
server on August 8, 2015 for 511 IXP participants. These
datasets contain a total of 96.6 million peering (i.e., non-
transit) routes for over 300,000 distinct prefixes. We also
use a trace of 25,676 BGP update messages from these
participants to the route server for the two hours following
the collection of this RIB table dump (the participants’
RIBs are naturally not perfectly aligned, since dumping
a BGP table of about 36 GB from the router takes about
fifteen minutes). Our data set does not contain any user
data or any personal information that identifies individual
users. We run our experiments on a server installed at this
IXP configured with 16 physical cores at 3.4 GHz and
128 GB of RAM.

This IXP does not use a programmable IXP fabric, so
we assume how participants might specify SDN policies,
as described in Section 2.1. Specifically, each participant
has between one to four outbound policies for each of
10% of the total participants. The number of policies
and set of participants are chosen uniformly at random.
Our sensitivity analysis on this percentage shows that our

9

10 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

iSDX
Unoptimized Centralized MDS-SDX [14] iSDX-D iSDX-N iSDX-R

Number of Forwarding Table Entries 68,476,528 21,439,540 763,000 155,000 65,250
Policy Compression Time (s) N/A 297.493 0.0629 0.111 2.810

Table 3: Summary of evaluation results for iSDX with 500 IXP participants. Note that compression times for iSDX are per-participant,
since each participant can compile policies in parallel; even normalizing by this parallelization still yields significant gains.

100 200 300 400 500

Participants

0

150000

300000

450000

600000

750000

Fo
rw

ar
di

ng
Ta

bl
e

E
nt

rie
s iSDX-D

iSDX-N
iSDX-R

Figure 8: Number of forwarding table entries.

results are influenced in magnitude but the underlying
trends remain. Note that this setup is more taxing than
the one in our previous work [14] where only 20% of
the total participants had any SDN policies at all. We
also evaluate iSDX’s performance for smaller IXPs by
selecting random subsets of IXP participants (ranging
from 100 to 500 ASes) and considering only the RIB
information and BGP updates for those participants. We
also repeated experiments using public RIB dumps and
BGP updates collected by RIPE’s RIS servers from 12
other IXPs [30]. As the observed workload was much
smaller in this case, we omit these results for brevity.

7.2 Steady-State Performance
We first evaluate the steady-state performance of iSDX.
To do so, we use the RIB dumps to initialize the SDX
controller (multiple of them for the distributed case) and
evaluate the overall performance in terms of the efficiency
of data-plane compression, and the time to compile poli-
cies and compress them into smaller forwarding tables.

Efficiency of compression. Figure 8 shows the number
of forwarding table entries for the three distributed con-
trollers: iSDX-D, iSDX-N, and iSDX-R. The number
of forwarding table entries increases with the increas-
ing number of IXP participants. Each of our techniques
progressively improves scalability. We observe that the
number of forwarding table entries for iSDX-R is very
close to the lower bound (i.e., best case), where the num-
ber of forwarding table entries is equal to the number of
SDN policies.

We also explore the effects of distributing the control
plane computation on the ability of iSDX to perform

100 200 300 400 500

Participants

100

101

102

103

104

105

N
um

be
ro

fN
ex

tH
op

s

Centralized Distributed

Figure 9: Number of virtual next-hop IP addresses for central-
ized and distributed control planes. Results for distributed iSDX
do not depend on encoding or compression approach.

100 200 300 400 500

Participants

100

101

102

103

104

105

106

Ti
m

e
(m

s)

MDS SDX-Central
iSDX-D

iSDX-N
iSDX-R

Figure 10: Time to perform policy compression.

MDS compression. The results are shown in Figure 9.
Given 500 participants, partitioning the control plane re-
duces the number of next hop entries for the border router
from 25,000 to 360. This reduction mitigates the load
on the border routers, since the number of virtual next
hop IP addresses reflects the number of ARP entries each
participant’s border router must maintain.

Time to perform policy compression. Figure 10 shows
the compression time for each controller; this time domi-
nates control-plane computation but only occurs at initial-
ization. The Centralized MDS-SDX operates on a large
input rule matrix, and thus requires nearly five minutes to
compress policies. iSDX-D distributes the computation
across participants, reducing compression time by three
orders of magnitude. iSDX-R takes longer than iSDX-
D and iSDX-N controllers. For 500 participants, policy
compression takes about three seconds.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 11

103 104 105

Updated Flow Rules/s

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

Ti
m

e
Unoptimized MDS SDX-Central

Figure 11: Rate at which forwarding table entries are updated.

7.3 Runtime Performance
After iSDX initializes, we replay a two-hour trace of
BGP updates from one of the largest IXPs in the world
to evaluate the runtime performance of iSDX compared
to other SDX designs. We focus on how iSDX reduces
the number of forwarding table updates induced by BGP
updates and policy changes, as well as the corresponding
increase in gratuitous ARP traffic, which is the cost we
pay for increased forwarding table stability.

Forwarding table updates in response to routing. Fig-
ure 11 shows the cumulative distribution of the number
of updated forwarding table entries per second the SDX
must process for a BGP update stream coming from all
511 participants at the IXP. MDS compression, which is
used in iSDX-D and iSDX-N, significantly increases the
rate of updates to the forwarding table in comparison to
an unoptimized SDX; this result makes sense because any
change to forwarding is more likely to trigger a change to
one of the encoded forwarding table entries. With iSDX-R,
there are never updates to the forwarding table entries in
response to BGP updates.

Update latency in response to BGP updates. We aim to
understand how quickly iSDX-R can update forwarding
information when BGP updates arrive. For iSDX-R, this
update time effectively amounts to computing updated
virtual next-hop IP and MAC addresses, since iSDX-R
never needs to update the IXP fabric forwarding table
entries in response to BGP updates. We evaluate update
latency with two experiments. First, we vary the frac-
tion of IXP participants to which each IXP participant
forwards with SDN policies. For example, if the frac-
tion is 1, each participant has between one and four SDN
forwarding policies (at random) for every other SDN par-
ticipant. Figure 12a shows this result; in all cases, the
median update latency in response to a BGP update is
less than 10 ms, and the 95th percentile in the worst case
is less than 20 ms. Even when we perform simultaneous
compilation of all 511 participants on just three servers

0.2 0.4 0.6 0.8 1.0

Fraction of Participants

0

4

8

12

16

20

Ti
m

e
(m

s)

(a) Compute time for increasing forwarding actions.

20 40 60 80 100

Update Rates

0

8

16

24

32

40

Ti
m

e
(m

s)

(b) Compute time for increasing sustained rates of BGP updates.

Figure 12: Latency of iSDX-R updates in response to BGP
update streams.

at the IXP, the median update time is only 52 ms, well
within practical requirements.

To understand how iSDX-R behaves when it receives
larger update bursts, we evaluate the update latency for
increasing sizes of BGP update bursts. We vary the num-
ber of BGP updates per second from 20 to 100 and send
a constant stream of updates at this rate for five minutes,
tracking the latency that the iSDX requires to process
the updates. (Although a table reset would presumably
cause a very large update burst, the fastest sustained BGP
update rate we observed in the trace was only about 35
BGP updates per second.) Figure 12b shows this result.
For example, for a rate of 100 BGP updates per second,
the median update latency is about 8 ms and the 95th
percentile is percentile is about 45 ms.

Gratuitous ARP overhead. Recall that SDX relies on
gratuitous ARP to update virtual destination MAC ad-
dresses when forwarding behavior changes, often in lieu
of updating the forwarding table itself. A centralized
SDX control plane sends this ARP response to all IXP
participants, but a distributed SDX can send this response
only to the border router whose route changed. Figure 13
shows the distribution of the rate at which a participant’s
border router receives gratuitous ARP messages from the
IXP controller in response to BGP routing changes, for
both the centralized design (i.e., centralized MDS) and the

11

12 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

100 101 102 103 104

Number of Gratuitous ARPs

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

Ti
m

e
Distributed Centralized

Figure 13: Rate at which a participant’s border router receives
gratuitous ARPs.

distributed one (i.e., iSDX); these rates are independent
of which encoding the iSDX uses.

8 Related Work

Ongoing SDX Projects. Software-defined IXPs have
been gaining momentum in the past few years [3, 22, 39],
and limited real-world deployments are beginning to
emerge. Yet, these existing deployments have focused on
either smaller IXPs or on forwarding traffic for a partial
routing table. Our original SDX [14] work introduced
mechanisms for applying SDN policies to control interdo-
main traffic flow at an IXP and introduced some simple
mechanisms for forwarding table compression; yet its
capability for compressing and updating forwarding ta-
bles cannot meet either the scale or speed demands of
the largest industrial IXP. Google’s Cardigan SDX con-
troller has been deployed in a live Internet exchange in
New Zealand [4, 35]. Cardigan does not use any of the
compression techniques that we use in either SDX or
iSDX. As a result, we expect that the size of Cardigan’s
forwarding tables would be similar to the “unoptimized”
results that we present in Section 2—orders of magni-
tude too large for use with hardware switches in large
IXPs. Control Exchange Points [21] propose to intercon-
nect multiple SDN IXPs to provide QoS services to the
participants and is less concerned with the design of an
individual SDN-based IXP.

Distributed SDN controllers. HyperFlow [37],
Onix [20], and Devolved Controllers [36] implement dis-
tributed SDN controllers that maintain eventually consis-
tent network state partitioning computation across multi-
ple controllers such that each operates on less state. Kan-
doo [15] distributes the control plane for scalability, pro-
cessing frequent events in highly replicated local control
applications and rare events in a central location. Several
distributed controllers focus on fault-tolerance [6, 10, 19].
In contrast to these systems, each participant controller
in iSDX operates independently and requires no state
synchronization. iSDX’s partitioning is first and fore-

most intended to achieve more efficient compression of
forwarding table entries; other benefits, such as parallel
computation and fault tolerance, are incidental benefits.
Techniques for data-plane scalability. Other work
seeks to address the problem of small forwarding tables
in hardware. Data-plane scaling involves (1) rule parti-
tioning [40], where data plane rules are partitioned across
multiple switches and incoming traffic is steered to load
balance across these switches; and (2) caching [18, 32],
which stores forwarding table entries for only a small
number of flows in the data plane. These techniques are
orthogonal to the compression that iSDX uses. Labeling
packets for FIB compression has been applied in various
contexts, such as MPLS [9], Fabric [7], LISP [12], and
Shadow Macs [1]. These techniques all reduce the num-
ber of forwarding table entries in certain routers, often
by pushing complex policies to the edge of the network.
These techniques generally apply in the wide area, and
cannot be directly applied to an IXP topology, although
some of the techniques are analogous.

9 Conclusion
Software-Defined Internet Exchange Points (SDXes) are
poised to reshape interdomain traffic delivery on the In-
ternet, yet realizing this vision ultimately requires the
design and implementation of an SDX that can scale to
(and beyond) the largest industrial IXPs on the Internet
today. To address this challenge, we developed iSDX,
the first SDX controller that scales to large industrial
IXPs. We demonstrated how the principles of modular-
ity and decoupling are necessary to scale the control and
the data planes. The specific approaches we suggest—
partitioning and compression—are applicable in various
settings where where composition of forwarding policies
is required (e.g., SDN WAN). We have released a pub-
lic, open-source implementation of iSDX on Github [16],
along with tutorials and instructions that have helped cat-
alyze early adoption. Our evaluation shows that iSDX re-
duces both forwarding table size and the time to compute
these entries by several orders of magnitude—enough
to make iSDX practical for real operation. Using BGP
routing updates from a route server at one of the world’s
largest IXPs, we showed that iSDX can support industrial-
scale operation.
Acknowledgments. We thank our shepherd Dave Oran,
Bryan Larish, Jamie Brown, Inder Monga, Rick Porter,
Glenn Gardner, Marc Pucci, David Jorm, and the anony-
mous reviewers for the feedback and comments. This
research was supported by National Science Foundation
Awards CNS-1539920, CNS-1409056, and a research
contract with the Laboratory for Telecommunications
Sciences. This research was also supported by Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram under the ENDEAVOUR project (grant agreement
644960).

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 13

References
[1] AGARWAL, K., DIXON, C., ROZNER, E., AND CARTER,

J. Shadow macs: Scalable label-switching for commodity
ethernet. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking (New York, NY,
USA, 2014), HotSDN ’14, ACM, pp. 157–162. (Cited on
page 12.)

[2] APACHE CASSANDRA. http://cassandra.
apache.org/. (Cited on page 9.)

[3] ATLANTICWAVE-SDX. https://itnews.fiu.
edu/wp-content/uploads/sites/8/2015/
04/AtlanticWaveSDX-Press-Release_
FinalDraft.pdf. (Cited on page 12.)

[4] BAILEY, J., PEMBERTON, D., LINTON, A., PELSSER,
C., AND BUSH, R. Enforcing rpki-based routing policy
on the data plane at an internet exchange. HotSDN, ACM.
(Cited on pages 1 and 12.)

[5] BOTEANU, V., BAGHERI, H., AND PELS, M. Minimizing
arp traffic in the ams-ix switching platform using openflow.
(Cited on page 7.)

[6] CANINI, M., KUZNETSOV, P., LEVIN, D., AND SCHMID,
S. A Distributed and Robust SDN Control Plane for Trans-
actional Network Updates. In INFOCOM (2015). (Cited
on page 12.)

[7] CASADO, M., KOPONEN, T., SHENKER, S., AND

TOOTOONCHIAN, A. Fabric: A retrospective on evolving
sdn. In Proceedings of the First Workshop on Hot Topics in
Software Defined Networks (New York, NY, USA, 2012),
HotSDN ’12, ACM, ACM, pp. 85–90. (Cited on page 12.)

[8] COURSERA SDN COURSE, 2015. https://www.
coursera.org/course/sdn1. (Cited on page 9.)

[9] DAVIE, B. S., AND REKHTER, Y. MPLS: technology and
applications. San Francisco, 2000. (Cited on page 12.)

[10] DIXIT, A., HAO, F., MUKHERJEE, S., LAKSHMAN, T.,
AND KOMPELLA, R. Towards an elastic distributed sdn
controller. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(New York, NY, USA, 2013), HotSDN ’13, ACM, ACM,
pp. 7–12. (Cited on page 12.)

[11] EXABGP. https://github.com/
Exa-Networks/exabgp. (Cited on page 9.)

[12] FARINACCI, D., FULLER, V., MEYER, D., AND LEWIS,
D. The locator/id separation protocol (lisp). Internet
Requests for Comments, January 2013. http://www.
rfc-editor.org/rfc/rfc6830.txt. (Cited on
page 12.)

[13] FEAMSTER, N., REXFORD, J., SHENKER, S., CLARK,
R., HUTCHINS, R., LEVIN, D., AND BAILEY, J. Sdx:
A software defined internet exchange. Open Networking
Summit (2013). (Cited on page 1.)

[14] GUPTA, A., VANBEVER, L., SHAHBAZ, M., DONO-
VAN, S. P., SCHLINKER, B., FEAMSTER, N., REXFORD,
J., SHENKER, S., CLARK, R., AND KATZ-BASSETT, E.
SDX: A Software Defined Internet Exchange. In ACM SIG-
COMM (Chicago, IL, 2014), ACM, pp. 579–580. (Cited
on pages 1, 2, 3, 4, 6, 7, 9, 10 and 12.)

[15] HASSAS YEGANEH, S., AND GANJALI, Y. Kandoo: A
framework for efficient and scalable offloading of control
applications. In Proceedings of the First Workshop on
Hot Topics in Software Defined Networks (New York, NY,
USA, 2012), HotSDN ’12, ACM, ACM, pp. 19–24. (Cited
on page 12.)

[16] ISDX GIHUB REPO. https://github.com/
sdn-ixp/iSDX. (Cited on pages 2, 9 and 12.)

[17] ISDX HW TEST INSTRUCTIONS. https:
//github.com/sdn-ixp/iSDX/tree/master/
examples/test-ms/ofdpa. (Cited on page 9.)

[18] KATTA, N., ALIPOURFARD, O., REXFORD, J., AND

WALKER, D. Infinite cacheflow in software-defined net-
works. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking (New York, NY,
USA, 2014), HotSDN ’14, ACM, ACM, pp. 175–180.
(Cited on page 12.)

[19] KATTA, N., ZHANG, H., FREEDMAN, M., AND REX-
FORD, J. Ravana: Controller fault-tolerance in software-
defined networking. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Re-
search (New York, NY, USA, 2015), SOSR ’15, ACM,
pp. 4:1–4:12. (Cited on page 12.)

[20] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J.,
POUTIEVSKI, L., ZHU, M., RAMANATHAN, R., IWATA,
Y., INOUE, H., HAMA, T., AND SHENKER, S. Onix:
A distributed control platform for large-scale production
networks. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation (Berke-
ley, CA, USA, 2010), OSDI’10, USENIX Association,
pp. 1–6. (Cited on page 12.)

[21] KOTRONIS, V., DIMITROPOULOS, X., KLÖTI, R., AGER,
B., GEORGOPOULOS, P., AND SCHMID, S. Control ex-
change points: Providing qos-enabled end-to-end services
via sdn-based inter-domain routing orchestration. (Cited
on page 12.)

[22] LIGHTREADING. Pica8 Powers French TOUIX SDN-
Driven Internet Exchange, June 2015. http://ubm.
io/1Vc0SLE. (Cited on pages 1 and 12.)

[23] MAMBRETTI, J. Software-defined network exchanges
(SDXs) and software-defined infrastructure (SDI), June
2014. Presentation at the Workshop on Prototyping and
Deploying Experimental Software Defined Exchanges
(SDXs). (Cited on page 1.)

[24] MONGODB. https://www.mongodb.org/. (Cited
on page 9.)

[25] MONSANTO, C., REICH, J., FOSTER, N., REXFORD,
J., AND WALKER, D. Composing software-defined net-
works. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (Berkeley,
CA, USA, 2013), nsdi’13, USENIX Association, pp. 1–14.
(Cited on page 6.)

13

14 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[26] NOVISWITCH 1132. http://noviflow.
com/wp-content/uploads/2014/09/
NoviSwitch-1132-Datasheet.pdf. (Cited
on pages 4, 5 and 7.)

[27] Openflow 1.3 specifications. http://bit.ly/
1eyrkxY. (Cited on page 7.)

[28] QUANTAMESH BMS T3048-LY2.
http://www.qct.io/Product/
Networking/Bare-Metal-Switch/
QuantaMesh-BMS-T3048-LY2-p55c77c75c159.
(Cited on pages 7 and 9.)

[29] RICHTER, P., SMARAGDAKIS, G., FELDMANN, A.,
CHATZIS, N., BOETTGER, J., AND WILLINGER, W. Peer-
ing at peerings: On the role of ixp route servers. In Pro-
ceedings of the 2014 Conference on Internet Measurement
Conference (New York, NY, USA, 2014), IMC ’14, ACM,
pp. 31–44. (Cited on page 9.)

[30] RIPE. Ris raw data, 2015. https://www.ripe.
net/analyse/internet-measurements/
routing-information-service-ris/
ris-raw-data. (Cited on page 10.)

[31] RYU SDN FRAMEWORK. http://osrg.github.
io/ryu/. (Cited on pages 1 and 9.)

[32] SARRAR, N., UHLIG, S., FELDMANN, A., SHERWOOD,
R., AND HUANG, X. Leveraging zipf’s law for traffic
offloading. ACM SIGCOMM Computer Communication
Review 42, 1 (January 2012), 16–22. (Cited on page 12.)

[33] SMOLKA, S., ELIOPOULOS, S., FOSTER, N., AND

GUHA, A. A Fast Compiler for NetKAT. In ICFP (2015).
(Cited on page 6.)

[34] SQLITE. https://www.sqlite.org/. (Cited on
page 9.)

[35] STRINGER, J., PEMBERTON, D., FU, Q., LORIER,
C., NELSON, R., BAILEY, J., CORREA, C., AND ES-
TEVE ROTHENBERG, C. Cardigan: Sdn distributed rout-
ing fabric going live at an internet exchange. In Computers
and Communication (ISCC), 2014 IEEE Symposium on
(June 2014), IEEE, pp. 1–7. (Cited on pages 1, 2 and 12.)

[36] TAM, A.-W., XI, K., AND CHAO, H. Use of devolved
controllers in data center networks. In Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2011 IEEE
Conference on (April 2011), IEEE, pp. 596–601. (Cited
on page 12.)

[37] TOOTOONCHIAN, A., AND GANJALI, Y. Hyperflow: A
distributed control plane for openflow. In Proceedings of
the 2010 Internet Network Management Conference on
Research on Enterprise Networking (Berkeley, CA, USA,
2010), INM/WREN’10, USENIX Association, USENIX
Association, pp. 3–3. (Cited on page 12.)

[38] WHYTE, S. Project CARDIGAN An SDN Con-
trolled Exchange Fabric. https://www.nanog.
org/meetings/nanog57/presentations/
Wednesday/wed.lightning3.whyte.sdn.
controlled.exchange.fabric.pdf, 2012.
(Cited on page 4.)

[39] WORKSHOP ON PROTOTYPING AND DEPLOYING

EXPERIMENTAL SOFTWARE DEFINED EXCHANGES.
https://www.nitrd.gov/nitrdgroups/
images/4/4d/SDX_Workshop_Proceedings.
pdf. (Cited on page 12.)

[40] YU, M., REXFORD, J., FREEDMAN, M. J., AND WANG,
J. Scalable flow-based networking with difane. SIG-
COMM Computer Communication Review 40, 4 (August
2010), 351–362. (Cited on page 12.)

14

