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Abstract
Network verification and configuration synthesis are promis-
ing approaches to make networks more reliable and secure
by enforcing a set of policies. However, these approaches re-
quire a formal and precise description of the intended network
behavior, imposing a major barrier to their adoption: network
operators are not only reluctant to write formal specifications,
but often do not even know what these specifications are.

We present Config2Spec, a system that automatically syn-
thesizes a formal specification (a set of policies) of a network
given its configuration and a failure model (e.g., up to two
link failures). A key technical challenge is to design a syn-
thesis algorithm which can efficiently explore the large space
of possible policies. To address this challenge, Config2Spec
relies on a careful combination of two well-known methods:
data plane analysis and control plane verification.

Experimental results show that Config2Spec scales to min-
ing specifications of large networks (>150 routers).

1 Introduction

Consider the task of a network operator who—tired of human-
induced network downtimes—decides to rely on formal meth-
ods to verify her network-wide configurations [4,14,22,30] or
to synthesize them automatically [5, 9, 10, 28, 29]. The opera-
tor quickly realizes that both verifiers and synthesizers require
a specification of the correct intended network-wide behavior.
A few generic requirements quickly come to mind: surely
she wants her network to ensure reachability. At the same
time, she realizes that her network does way more than just
ensuring reachability. Among others, it needs to enforce load
balancing for popular destinations, provide isolation between
customers, drop traffic for suspicious prefixes, and reroute
business traffic via predefined waypoints—all these under
failures and over hundreds of devices. Writing the precise
specification seems daunting, especially as most of it has been
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homegrown over years, by a team of network engineers (some
of which do not even work there anymore).

This situation illustrates the difficulty of writing network
specifications. Akin to software specifications, formal spec-
ifications are hard to write (as hard as writing the program
in the first place [20]), debug, and modify [2, 21]. Yet, with-
out easier ways to provide network specifications, network
verification and synthesis are unlikely to get widely deployed.

Config2Spec We introduce Config2Spec, a system that auto-
matically mines a network’s specification from its configura-
tions and a failure model (e.g., up to k failures). Config2Spec
is precise: it returns all policies that hold under the failure
model (no false negatives) and only those (no false positives).

Challenges Mining precise network specifications is chal-
lenging as it involves exploring two exponential search spaces:
(i) the space of all possible policies, and (ii) the space of
all possible network-wide forwarding states. The challenge
stems from the fact that individually exploring each of the
search spaces can be prohibitive: a search for the true policies
is hard since they are a small fraction of the policy space,
while a search for the violated policies is hard since these
require witnesses (data planes), which are often sparse.

Insights Config2Spec addresses the above challenges by com-
bining the strengths of data plane analysis and control plane
verification. Data plane analysis enables us to compute the set
of policies that hold for a single data plane, thereby providing
an efficient way of pruning policies. On the other hand, con-
trol plane verification is an efficient way of validating that a
single policy holds for all the data planes. Config2Spec com-
bines the two approaches to prune the large space of policies
through sampling and data plane analysis and then, to avoid
the need of exploring all data planes, validating the remain-
ing policies with control plane verification. The key insight
is to dynamically identify the approach providing for better
progress. We design predictors which rely on past iterations
and the failure model to switch between the two approaches.
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Scalability While this approach scales, we identify three
domain-specific techniques to improve it even further. First,
to better utilize the pruning through data plane analysis, we
design a policy-aware sampler of data planes. We experimen-
tally show that our approach outperforms a random sampler:
with typically fewer samples, it leads to pruning substantially
more policies. Second, to reduce the number of queries posed
to the verifier, we group queries to the control plane verifier.
Third, we analyze the network topology to prune policies that
are physically not feasible due to poor connectivity of the
routers. For large networks and permissive failure models,
this technique makes the difference between Config2Spec
completing in few hours instead of days.

System We implemented Config2Spec, which leverages
two state-of-the-art data plane analysis and control plane ver-
ification tools, Batfish [13] and Minesweeper [4]. As the
implementation relies on these two tools, it is tied to configu-
rations and features supported by them. The approach itself,
is not limited to any specific type of configuration.

Config2Spec provides a substantial improvement over base-
lines that use each of the above tools in isolation (up to 8.3x
against the best baseline). Further, Config2Spec often mines
a precise network specification within an hour, and for large
networks (> 150 routers) within 2.7 hours (for OSPF config-
urations) or 13.7 hours (for BGP configurations). We also
illustrate that Config2Spec can handle real network configura-
tions by running it successfully on Internet2’s configurations.

Contributions Our main contributions are:

• A novel approach to automatically mine the specification
of a network by leveraging both data plane analysis and
control plane verification (§3).
• A dynamic predictor to decide which approach provides

for better progress (§4).
• A policy-aware sampler to find data planes that are likely

to prune more policies (§5).
• Policy grouping and topology-based trimming to reduce

the number of queries posed to the verifier (§6, §7).
• An end-to-end implementation and an extensive evalua-

tion across different topologies and baselines, showing
that Config2Spec scales to large networks and signifi-
cantly outperforms possible baselines (§8).

Novelty Several previous works [6, 7, 31] have looked into
mining a network’s specification by observing the content of
the data plane. All of these works are limited to reachability
policies and unlike Config2Spec, they either approximate the
specification or do not consider the impact of failures on the
specification. Concretely, they only produce the network’s
policies which hold when all links and routers are up. In
contrast, Config2Spec is able to mine precise network specifi-
cations for a given failure model.
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Figure 1: An OSPF network with five routers and two desti-
nations. An ACL at router 5 blocks traffic destined to prefix
p1, attached to router 1.

Usefulness In general, the network’s specification can be
used for many different applications, such as configuration
synthesis/verification and network management (e.g., analyz-
ing the effects of configuration changes). Further, having
the specification at hand allows network operators to check
whether the policies they intend to enforce are indeed en-
forced.

In multiple discussions, network operators confirmed that
a tool like Config2Spec is indeed useful. One operator
mentioned that the adoption of a new monitoring tool fell
through because it required the network’s specification to
detect flawed configuration changes. Another operator men-
tioned that having the network’s specification at hand would
greatly help them better understand their configurations that
accumulated over years. Especially, since short-term fixes to
problems that need immediate attention (e.g., congestion and
hardware problems) are often forgotten and persist even long
after the responsible engineer left the company. In addition,
the specification can be used to streamline network’s configu-
ration by refactoring it, while keeping the same specification.

2 Motivation and Problem Definition

Obtaining a specification for how a network behaves can be
useful in a variety of scenarios beyond network verification
and synthesis, including helping the operator identify unex-
pected behaviors and inconsistencies, as well as enabling a
smoother transition to (updated) configurations upon new re-
quirements. To define the problem of mining specifications,
we rely on two concepts: a network specification, composed
of a set of policies, and a failure model, specifying under
which failures the network specification should hold. We
next define these concepts and illustrate them on a running
example. Then, we introduce the network specification min-
ing problem and discuss several baseline approaches together
with their shortcomings, thus motivating our solution.

Running example Throughout the paper, we refer to the
example shown in Fig. 1. Here, we have a network that
consists of five routers and seven links. There are two host
networks, p1 and p2, attached to routers 1 and 2. All routers



Policy Meaning

reachability(r, p) Traffic from r can reach p.
isolation(r, p) Traffic from r is isolated from p.
waypoint(r, w, p) Traffic from r to p passes through w.
loadbalancing(r, p) Traffic from r to p is load balanced

on at least two paths.

Table 1: Network policies (r and w are routers, p is a prefix).

are in the same OSPF area and the OSPF weights are depicted
on the links. An IP access control list (ACL) on the interface
from router 5 to 2 drops all packets destined to prefix p1.

Failure models A failure model consists of a symbolic envi-
ronment and a number k. The symbolic environment defines
which links are up or down, and which links may fail. Tech-
nically, a symbolic environment is a partition of the network
links L into three subsets Lup, Ldown, and Lsymbolic (i.e., given
Lup and Ldown, we can derive Lsymbolic = L \ (Lup ∪Ldown)).
The number k is a bound on the total number of links which
can be simultaneously down. A concrete environment is a par-
tition of the network links L into two subsets Lup and Ldown.
Namely, all links are fixed to a concrete state: up or down.
We say that a failure model with a symbolic environment LSE

up ,
LSE

down, LSE
symbolic and a bound k, captures a concrete environ-

ment with LCE
up and LCE

down if LSE
up ⊆ LCE

up , LSE
down ⊆ LCE

down, and
|LCE

down| ≤ k. Intuitively, a failure model captures all concrete
environments for which the links in LSE

up are up, the links in
LSE

down are down, and there are at most k links which are down.
For example, a failure model for our running example is

Lsymbolic = L (i.e., Lup and Ldown are the empty sets) and k = 1.
This model describes any concrete environment with at most
one link failure. There are eight concrete environments which
meet this failure model: one where no link is down, and seven
in which each of the links fails once. Another failure model
is Lup = {2-4}, Ldown = {2-5}, Lsymbolic = L\ (Lup∪Ldown),
and k = 2. This model describes any concrete environment
whose link between routers 2 and 4 is up, the link between 2
and 5 is down, and the rest may be up or down. Since k = 2,
another failed link is allowed in addition to 2-5. There are six
concrete environments that meet this failure model.

Network specification and policies A network specification
consists of a set of policies. A policy captures a specific
behavior in the network (e.g., reachability of two routers).
It is modeled with a predicate (a constraint) which, given a
concrete environment, evaluates to true if the policy holds for
that concrete environment, and false otherwise. For our run-
ning example, the reachability(5, p2) policy evaluates
to true for the concrete environment in which all links are up,
and to false for the concrete environment where all links are
down. We say a policy holds for a failure model if it holds
for all concrete environments captured by the failure model.
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Figure 2: Illustration of the baseline approaches.

For example, the policy reachability(5, p2) holds for the
failure model Lsymbolic = L and k = 1, but not for k = 3.

In our work, we focus on reachability, isolation, waypoint,
and load balancing policies (summarized in Table 1). The
reachability, isolation, and load balancing policies are defined
as predicates over a router r and a subnet in the network p.
These evaluate to true if, for the given concrete environment,
traffic from router r can reach the prefix p, is isolated from
p, or load balanced on at least two paths to p, respectively.
The waypoint policy is defined over two routers r and w, and
evaluates to true if, for the given concrete environment, traffic
from r destined to prefix p passes through w. We note that our
approach is extensible to any policy that is defined over the
forwarding state (e.g., equal length paths).

Problem definition We now define the problem of mining a
network specification:

Given a network configuration and a failure model, mine
the network specification, i.e., the set of all policies which
hold under the failure model.

For our running example and the failure model Lsymbolic = L
and k = 1 (modeling up to one link failure), the network
specification consists of the following policies:
reachability(1, p1), reachability(1, p2),
reachability(2, p1), reachability(2, p2),
reachability(3, p1), reachability(3, p2),
reachability(4, p1), reachability(4, p2),
reachability(5, p2), loadbalancing(4, p2).

Baseline solutions To address the above problem, one may
consider two baseline approaches: (i) data plane analysis and
(ii) control plane verification.

Data plane analysis Data plane analysis tools (e.g., [13, 17,
18]) enable reasoning of policies that hold for a certain con-
crete environment. Today, such tools are scalable enough to
reason about all of our considered policies within seconds or
minutes (mostly depending on the size of the network). Thus,
one could use such tools to mine a specification by iterating
over all concrete environments captured by the failure model,
computing a data plane for each (from the configuration), and



analyzing them to infer the set of policies which hold for each
concrete environment. The solution is then the intersection of
all obtained policy sets. Fig. 2 (top) visualizes this approach.
Initially, every policy is a candidate which can be part of the
network specification (blue area). With every sampled data
plane, the set of policies that hold for it are computed (shown
in circle). These are then intersected with the policies of the
previous samples (dashed circles). At the end, the remaining
candidate policies are those that hold for all samples, and thus
form the network specification (green area). Unfortunately,
for large topologies or failure models with many concrete
environments, this approach does not scale (see §8.2).

Control plane verification Control plane verification tools
(e.g., [4]) enable checking individual policies for a given
failure model. Technically, this can be accomplished by sym-
bolically encoding the network, its configuration, the failure
model and a policy into a formula, and then checking the
satisfiability of this formula. Fig. 2 (bottom) visualizes this
approach. Initially, all policies are part of the set of candi-
dates of the specification. At every step, one policy (circle) is
picked and posed as a query to the verifier. The verifier either
returns that the policy holds (green) or shows a counterexam-
ple to disprove it (gray). In the end, every policy has either
been verified or disproved. As in data plane analysis, while
control plane verification tools scale to the policies that we
consider, enumerating all possible policies and checking them
one by one in the above manner is prohibitive (see §8.2).

3 Our Approach: Config2Spec

In this section, we first present our key insight of combining
the two baseline approaches from §2 and explain the reason-
ing behind it. Then, we provide an overview of the system
(details are provided in the following sections).

3.1 Key Insight

We address the problem of mining a network specification
by combining the baseline approaches and leveraging their
respective strengths: data plane analysis is efficient at pruning
policies, while control plane verification is efficient at validat-
ing policies. The key idea of our combination is to reduce the
space of policies by sampling forwarding states and pruning
policies using data plane analysis, and then running control
plane verification to verify a small set of remaining policies.

This combination works well because many policies which
do not hold are dense violations. That is, they are violated for
many of the concrete environments captured by the failure
model. For example, in our running example and the failure
model Lsymbolic = L with k = 1 (up to one failure), the policy
waypoint(3, 1, p2) only holds for the concrete environ-
ment in which all links are up, but the one from router 3 to
4. Thus, by sampling any other concrete environment (e.g.,

Ldown = {2-5},Lup = L\Ldown), and computing all policies
that hold for it, we can prune waypoint(3, 1, p2).

On the other hand, there are sparse violations, which are
policies that do not hold for the failure model, but are violated
only by very few concrete environments. For example, in
our running example and the same failure model, the policy
isolation(5, p1) is violated only by two concrete environ-
ments: (i) Ldown = {2-5},Lup = L\Ldown and (ii) Ldown = {1-
2},Lup = L \Ldown. Unless we check these particular envi-
ronments, this policy cannot be pruned by data plane analysis.
Thus, we prune sparse violations during the step of control
plane verification. Since the overall number of true policies
and sparse violations is often significantly smaller than the
number of concrete environments, control plane verification
is an efficient solution for this.

3.2 The Config2Spec System

We build on this insight to design Config2Spec (Fig. 3), which
takes as input the network configuration (of all devices) and a
failure model and outputs the network specification.

Config2Spec runs in a loop which dynamically switches
between the two approaches until the specification is mined.
To achieve this, Config2Spec relies on three main components:
(i) predictors, (ii) data plane analysis, and (iii) control plane
verification. In addition, Config2Spec maintains two sets of
policies, cands which overapproximates the specification,
and verified which underapproximates it. We next explain
these sets, the algorithm flow and the three components. We
provide the full algorithm of Config2Spec in Appendix A.

Cands and verified Config2Spec keeps two sets: (i) cands,
containing the current candidate policies, i.e., the policies
that are known to hold or have not been pruned yet, and
(ii) verified, containing the policies that are known to hold.
cands initially contains all possible policies (blue area in
Fig. 3), while verified is initially empty (green area in
Fig. 3). We note that in practice, to avoid storing all policies
in cands, only to prune many of them upon the first iteration
of data plane analysis, Config2Spec directly initializes cands
to the set of policies that holds for some concrete environment.

An invariant of the execution is that cands is a superset
of the network specification, i.e., it contains at least all the
policies that hold, while verified is a subset of it, i.e., it con-
tains only policies that hold. Config2Spec terminates when
these sets are equal – implying both equal the network speci-
fication – and then returns verified. Precision is ensured as
Config2Spec does not miss any policy thanks to the invariant
that verified contains only true policies (no false positives),
while cands cannot miss a true policy (no false negatives).

Flow At each iteration, Config2Spec checks if cands equals
verified. If so, it terminates. Otherwise, it checks two pre-
dictors to decide which approach is the more promising one
to pursue: data plane analysis or control plane verification.
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Figure 3: Config2Spec mines the specification from the network configuration and the failure model. It relies on three components:
predictors, data plane analysis, and control plane verification. It maintains two sets: cands, consisting of the current candidate
policies, and verified, consisting of the verified policies. During the execution, policies are removed from cands or added to
verified. When cands equals verified, both equal the network specification, and then verified is returned.

Predictors (§4) We design two predictors to heuristically
estimate which approach is likely to be more effective and
dynamically transition between them. The predictors consider
the execution times and the number of pruned and verified
policies. The first predictor checks the effectiveness of each
approach in classifying policies by measuring the time it
needs to classify a single policy. The second predictor esti-
mates the remaining time to mine the full specification.

Data plane analysis (§5) In every iteration of data plane
analysis, Config2Spec samples a concrete environment, com-
putes the policies that hold for it, and removes from cands
any other policy. To sample a concrete environment, it exe-
cutes PickCE, which employs a novel policy-aware sampler
to find a concrete environment likely to prune more policies.
Then, Config2Spec computes the data plane of that sample
via DPCompute, which relies on prior tools (e.g., [13]). Next,
it executes InferPol to compute all policies which hold for
this data plane, and updates cands accordingly. Finally, Con-
fig2Spec checks whether all data planes have been analyzed.
If so, it sets verified to cands, as the entire failure model
has been covered and the full specification has been mined.

Control plane verification (§6) In each iteration of control
plane verification, Config2Spec verifies a set of policies. For
this, Config2Spec first executes PickPolicies to pick the
next set of policies to verify. It then calls CPVerification,
which relies on prior tools (e.g., [4]). The verifier either
determines that all policies hold or returns a counterexam-
ple. In the former case, Config2Spec adds all the policies
to verified, while in the latter case Config2Spec removes
the ones violated by the counterexample from cands. Before
the first iteration of control plane verification, Config2Spec
invokes TopoTrim to reduce the verification overhead.

Topology-based trimming (§7) TopoTrim analyzes the
topology and the failure model to trim (i.e., prune) policies
which cannot hold regardless of the configuration (e.g., due to
a lack of connectivity). It relies on graph algorithms to prune
reachability, waypoint, and loadbalancing policies.

4 Config2Spec’s Predictors

In this section, we describe how Config2Spec dynamically
decides whether to run the data plane analyzer or the control
plane verifier. This decision relies on two predictors that cap-
ture the effectiveness of the approaches and the expected time
remaining. Accordingly, Config2Spec infers which approach
is more likely to make better progress. The predictors are:
(i) the Time-per-policy (TP) predictor, favoring the approach
more likely to classify more policies in a single execution, and
(ii) the Remaining-time (RT) predictor, favoring the approach
more likely to complete faster. If the predictors disagree on
the approach, Config2Spec runs the data plane analyzer, we
explain the reason for this choice shortly.

High-level behavior The predictors dynamically identify the
different stages of the algorithm. In the beginning, sampling
concrete environments is likely to provide the fastest progress,
as at this stage the dense policies have not been pruned yet.
Therefore, the TP predictor prefers data plane analysis ini-
tially. After most of the dense policies have been pruned,
sampling environments may not significantly decrease the
number of candidate policies anymore. At this point, the TP
predictor starts to prefer control plane verification. Thus, the
choice is then up to the RT predictor. It determines whether
Config2Spec switches to control plane verification. If running
data plane analysis for the remaining concrete environments



is likely to be faster than running control plane verification on
the remaining unclassified policies, the RT predictor prefers
data plane analysis. Otherwise, it prefers control plane ver-
ification. This choice depends on the failure model: if it
captures a small number of concrete environments, enumer-
ating all of them can be faster than verifying the remaining
set of candidate policies. In our running example and the
failure model Lsymbolic = L and k = 1, this is the case. To con-
clude, the joint behavior of the predictors is to prefer control
plane verification whenever (i) there is a large number of con-
crete environments and (ii) most remaining policies are true
policies (i.e., part of the specification) or sparse violations.

Computation The predictors rely on statistics of the previous
runs. The TP predictor is implemented by tracking two times:
T T P

analysis and T T P
veri f y, which record the average time to classify

a single policy through analysis or verification (respectively).
For T T P

analysis, this time is computed by taking the ratio of the
execution time of the last run of the data plane analysis and
the number of policies which were pruned as a result of this
analysis. For T T P

veri f y, this time is computed similarly by taking
the ratio of the execution time of the last run of the verifier and
the number of policies which were classified by the verifier.
The latter number is one of the following. If the verifier proved
all policies hold, it equals the number of policies. Otherwise,
if the verifier returned a counterexample, this number equals
to the number of policies which were discovered as violations
(i.e., the counterexample violated them). The TP predictor
prefers the data plane analyzer if T T P

analysis < T T P
veri f y.

The RT predictor is implemented by tracking two (different)
times: T RT

analysis and T RT
veri f y, which record the execution time

of a single run of the analyzer and verifier (respectively). The
RT predictor prefers the data plane analyzer if the remaining
time of the analyzer, obtained by multiplying T RT

analysis with
the number of non-analyzed concrete environments is smaller
than the remaining time of the verifier, given by multiplying
T RT

veri f ier with the remaining number of unclassified policies.

Initialization To initialize T T P
veri f y and T RT

veri f y, Config2Spec
executes the verifier on M policy sets (in our implementa-
tion, M = 10). It then sets T RT

veri f y to the average execution
time of the verifier, and T T P

veri f y to the average ratio of exe-
cution time and policies verified or pruned. The estimates
T T P

analysis,T
RT

analysis are initially 0, to guide Config2Spec to begin
by data plane analysis. This captures our premise that initially
data plane analysis is likely to classify more policies (the
dense violations, which are the vast majority of the policies).

Windows To smoothen the behavior of the predictors, the
times are averaged over the last N runs of the analyzer or
verifier (in our implementation, N = 10).
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Figure 4: The policy graph is computed from the forwarding
graphs of a previously analyzed concrete environment and
guides us to an environment likely to prune more policies.

5 Data Plane Analysis

In this section, we present the key ingredients of running the
data plane analysis in Config2Spec: the selection of the next
concrete environment to analyze (PickCE), the computation
of the data plane for that environment (DPCompute) and the
inference of the policies from the data plane (InferPol).

5.1 Selection of Concrete Environments
At every iteration, one concrete environment is analyzed. The
choice of this environment has a great impact on the overall
runtime of the system. Thus, we design a sampling technique
to pick the next concrete environment to prune a large number
of policies from the set of candidates (cands). We call this
technique policy-aware sampling as the next environment is
picked based on the policy graph, a concept reflecting the
current set of candidate policies, which we describe next.

Policy graph The policy graph for a given concrete environ-
ment is a copy of the network topology, augmenting the links
with the number of policies that forward traffic along them.
We say a reachability(r,p) policy forwards traffic along
a link, if that link is part of a path in the forwarding graph of p
from r to p. We define it similarly for the other policies. The
policy graph allows us to identify the links on which large
numbers of policies depend. Thus, we can pick a concrete
environment in which these links are down. If the policies
indeed hold only thanks to these links, they will be discovered
as violations when analyzing this concrete environment.

We next define the policy graph. Given a network topol-
ogy, a configuration, and a concrete environment, the policy
graph extends the network topology with a mapping of links
to weights (integers). The weight of a link represents the
number of unclassified policies whose traffic is forwarded
along that link. The weight is computed from the forward-



ing graphs of the concrete environment. Fig. 4 illustrates
the concept of the policy graph using our running exam-
ple (Fig. 1). Here, we are given an (already analyzed) con-
crete environment where all links are up, but the one between
routers 3 and 4 (Fig. 4a). In this example, there are two
destinations (p1 and p2) and hence two forwarding graphs
(Fig. 4b). For simplicity’s sake, consider the following unclas-
sified policies for destination p2: reachability(i, p2),
where i ranges over all five routers, and loadbalancing(4,
p2), which holds since router 4 has three paths to router 2
in the forwarding graph of p2. In this setting, the policy
graph (Fig. 4c) maps, for example, link 1-3 to 1 (as only
reachability(3, p2) depends on this link), link 2-5 to
3 (for reachability(4, p2),reachability(5, p2) and
loadbalancing(4, p2)), 1-2 to 4 (for reachability(1,
p2), reachability(3, p2), reachability(4, p2) and
loadbalancing(4, p2)), and 1-2 (which is down) to 0.

Policy-aware sampling Based on the idea of the policy graph,
we design a policy-aware sampler for PickCE. The policy-
aware sampler picks the next concrete environment to ana-
lyze based on the policy graph of the previously analyzed
concrete environment and the current set of unclassified poli-
cies (cands\verified). This is done by selecting the links
to add to Ldown based on a probability distribution propor-
tioned to the links’ weights in the policy graph. The links’
weights are computed by iterating over all unclassified poli-
cies (cands\verified) and counting, for each link, the num-
ber of policies that are forwarded along it. The probability
distribution is needed to avoid getting stuck: a deterministic
approach which adds the heaviest links to Ldown can result
in an oscillation between two concrete environments which
already have been analyzed (we observed this phenomenon
in practice). Adding non-determinism mitigates this issue,
and in case it cannot, PickCE resorts to returning a random
concrete environment which has not yet been analyzed. In
the beginning, Config2Spec starts by analyzing the concrete
environment in which all symbolic links are up.

For our running example and the policy graph in Fig. 4c,
it assigns the link 1-3 to the probability 1

14 , 2-5 to 3
14 , and

1-2 to 4
14 . Assuming the usual failure model (Lsymbolic = L

and k = 1), it then picks the next concrete environment by
choosing one link that is down based on the distribution. For
example, it picks the link 1-2 (Fig. 4d).

5.2 Analysis of a Concrete Environment

We now explain DPCompute and InferPol, which together
compute all policies that hold for a given concrete environ-
ment and configuration.

The DPCompute algorithm executes two steps. First, for
each router in the network, it computes the router’s forwarding
state. The forwarding state of a router is a list of destination
prefix and next hop pairs. A pair (p,w) in the forwarding state

of router r indicates that traffic reaching r for destination p
is sent to router w. Computing the forwarding state of the
routers is not trivial, however, there are solutions to efficiently
compute them (e.g., [13]).

In the second step, DPCompute builds from the routers’ for-
warding states the forwarding graphs. It builds one forwarding
graph for each equivalence class of destination prefixes (i.e.,
prefixes which can be captured via some prefix and have the
same forwarding graph). The forwarding graph of a prefix p
is a directed graph in which we have a link from router r to w
if, according to r’s forwarding state, traffic for p is sent to w.

From the forwarding graphs, InferPol computes the poli-
cies by leveraging graph algorithms. For reachability and
waypoint policies, it builds the dominator tree of all for-
warding graphs. A dominator tree is a tree rooted at the
destination of the forwarding graph. Its nodes are all routers
that have at least one path to the destination. A router a is
a child of a router b if (i) traffic from router a to the des-
tination must pass through router b and (ii) for any other
router c such that traffic from a must pass through it, traf-
fic from b must also pass through it. InferPol infers a
reachability(r, p) policy for every node r in the domina-
tor tree of p. It further infers waypoint(r,w,p) for all routers
r which are dominated by a waypoint w in the dominator tree
of p. For loadbalancing, it computes the shortest paths
in the network and infers loadbalancing(r,p) for routers
r with multiple paths of the same cost available to reach
destination p. For isolation, it infers isolation(r,p)
for every router r and prefix p for which it has not inferred
reachability(r,p).

6 Control Plane Verification

Here, we present the two ingredients of the control plane veri-
fication in Config2Spec: the selection of policies to verify next
(PickPolicies) and their verification (CPVerification).

CPVerification We begin with CPVerification, which
takes as input a set of policies, the network configuration and
the failure model. It checks whether all policies hold for any
concrete environment meeting the failure model (for the given
network configuration), or returns a counterexample.

Technically, the verifier symbolically encodes the configu-
ration and the failure model as logical constraints: ϕnet and
ϕ f model . The set of policies is encoded as a conjunction over
formulas encoding the policies: ϕpols =

∧
pl∈pols ϕpl . The

verifier checks the satisfiability of ϕnet ∧ϕ f model ∧¬ϕpols. If
it is unsatisfiable, then all policies in pols hold. If the formula
is satisfiable, then there is a counterexample, i.e., a concrete
environment captured by the failure model, which under the
given configuration violates ϕpols (i.e., at least one policy is
violated). While the challenge of verifying network policies
is not trivial, there are effective solutions (e.g., [4]).



PickPolicies This procedure takes the set of candidate poli-
cies (cands) and verified policies (verified) and returns the
next set of policies to verify (from cands\verified). Since
verifying is computationally expensive, the goal is to mini-
mize the overall execution time of the verifier. By choosing a
set of policies which have a dependency, the overall execution
time of verifying them can be smaller than if they were veri-
fied one by one. Towards this goal, PickPolicies returns a
maximal set of policies with the same destination prefix p.

We pick p arbitrarily, as once Config2Spec chooses to run
the verifier, usually most policies are true policies.

Our grouping approach is always at least as good as verify-
ing the policies one by one. The reason is that at each query
to the verifier, at least one policy is classified. In the worst
case, only one policy is classified as violation (if the verifier
returned a counterexample which satisfies all policies but one).
In a better case, several policies are classified as violation. In
either of these cases, the violated policies are removed from
cands, while the other policies in the set remain in cands
(and will be verified in a later execution of CPVerfication).
In the best case, all policies are classified as true policies.
Namely, we can only gain from verifying multiple policies in
the same execution of the verifier. Further, our grouping is
maximal – grouping of policies with different prefixes is not
helpful, as each prefix has a different forwarding graph, and
so the verifier does not gain from grouping such policies.

7 Topology-based Trimming

In this section, we describe TopoTrim, a technique which
reduces the load on the control plane verification by analyz-
ing the failure model and the network topology. TopoTrim
classifies policies as violations if their minimal connectivity
requirements are not met under the given failure model.
TopoTrim is executed the first time Config2Spec chooses to

run the verifier. It relies on the insight that some policies can
be classified as violations directly from the network topology
and failure model. For example, consider the network in Fig. 1
and the failure model with Lsymbolic = L and k = 2 (i.e., up to
two link failures). We can infer that reachability(3, p1)
cannot hold as 3 can become disconnected from the rest of
the network if both links connected to it fail. For the same
reason, any waypoint or loadbalancing policy where 3 is
involved can be classified as violation.

To prune such policies, TopoTrim computes the (k+ 1)-
edge-connected components of the topology for a failure
model with k permitted failures. A (k+1)-edge-connected
component is a set of nodes which remain connected even
after removing any k edges. For example, for the network in
Fig. 1 and the same failure model (where k = 2), the following
routers are in a 3-edge-connected component: {1,2,4}.

There are efficient algorithms to compute (k + 1)-edge-
connected components, however they do not support links that
must be up or down (Lup or Ldown). To take these into account,

TopoTrim first removes from the topology all links in Ldown,
updates k to k− |Ldown|, and then, for each link in Lup, it
adds k additional links between the routers to simulate that
these routers are (k+ 1)-edge-connected. For example, for
Lup = {(1,3)}, Ldown = /0 and k = 2, it adds two more edges
between 1 and 3, so they are considered 3-edge-connected.

Based on this, TopoTrim classifies the following policies
as violations (which are thus removed from cands). The poli-
cies reachability(r,p) and loadbalancing(r,p), for
any router r and prefix p such that (r,rp) is not in a (k+1)-
edge-component, where rp is the router attached to p. The
policy waypoint(r,w,p) is classified as violation for any
routers r and w and a prefix p such that (i) (r,w) is not in a
(k+1)-edge-component or (ii) (w,rp) is not in a (k+1)-edge-
component, where rp is the router attached to p.

8 Experimental Evaluation

In this section, we evaluate Config2Spec on multiple topolo-
gies to address the following research questions:
RQ1 How does Config2Spec scale to realistic topologies?

We show that even for large networks with 158 routers
and 189 links, it completes within 2.7 hours for OSPF
configurations and 13.7 hours for BGP configurations.

RQ2 How does Config2Spec compare to the baselines? We
show it improves the best one by up to a factor of 8.3.

RQ3 How do the domain-specific techniques contribute to
Config2Spec? We show that (i) the policy-aware sam-
pler leads to smaller candidate sets by up to a factor of
2 compared to random, and obtains them with fewer
samples, and (ii) topology-based trimming and policy
grouping reduce the queries by up to a factor of 2’500.

RQ4 Can Config2Spec be run on a real network configura-
tion? We illustrate this on the Internet2 configuration.

Implementation Config2Spec is implemented in 5k lines of
Python and Java code.1 It computes the routers’ forward-
ing states (§5.2) using Batfish [13], and verifies policies us-
ing Minesweeper [4]. We extended Minesweeper with the
waypoint and loadbalancing policies. We note that while
our implementation supports only configurations and features
supported by these two third-party tools, our approach is not
limited to specific configuration types or features.

Config2Spec takes as input the routers’ configurations and a
failure model. It outputs all policies that hold for the provided
input. For large networks, we assume the network operator
provides a list of devices that act as waypoints (e.g., mid-
dleboxes). In our experiments, we simulate it by randomly
picking 20% of the routers to serve as waypoints.

Experiment setup To study how Config2Spec scales as a
function of the topology size, we picked three topologies
(small, medium, and large) from the Topology Zoo collec-

1Code is available at https://github.com/nsg-ethz/config2spec.

https://github.com/nsg-ethz/config2spec


Topology k Config Overall DPA CPV

BICS

1
OSPF 38.8 s 100% 0%
BGP 68.3 s 100% 0%

2
OSPF 228.8 s 30% 70%
BGP 1’341.2 s 85% 15%

3
OSPF 117.4 s 27% 73%
BGP 319.7 s 14% 86%

Columbus

1
OSPF 398.0 s 100% 0%
BGP 457.2 s 100% 0%

2
OSPF 1’328.1 s 18% 82%
BGP 6’772.0 s 17% 83%

3
OSPF 907.0 s 27% 73%
BGP 2074.1 s 18% 82%

US Carrier

1
OSPF 6’386.2 s 100% 0%
BGP 6’813.4 s 100% 0%

2
OSPF 10’528.4 s 15% 85%
BGP 49’151.0 s 6% 94%

3
OSPF 2’542.5 s 59% 41%
BGP 5’873.3 s 34% 66%

Table 2: Execution time of Config2Spec as a function of the
network topology, number of failures and configuration type.

tion [19]: BICS with 33 routers connected by 48 links, Colum-
bus with 70 routers and 85 links, and US Carrier with 158
routers and 189 links. We used NetComplete [10] to synthe-
size OSPF and BGP configurations using its path-ordering
specifications for 2, 4, 8 and 16 prefixes. For each configura-
tion type and topology, we generated 5 configuration sets.

For each set of router configurations, Config2Spec com-
putes all policies which hold, for all four policy types in
Table 1. We consider three failure models, where k is 1, 2,
or 3, and we fix Lup = Ldown = /0 and Lsymbolic = L (i.e., any
link can be up or down). The reported results are averaged
over these runs and the two configuration types (i.e., OSPF
and BGP). We ran all experiments in virtual machines with
32 GB of RAM and 12 virtual cores running at 2.3 GHz.

8.1 Scalability of Config2Spec

We begin by studying how Config2Spec scales to realistic
topologies. To this end, we ran experiments on all three
topologies and three failure models, and measured the time
Config2Spec spent on the data plane analysis part – in-
cluding PickCE, DPCompute (which invoked Batfish), and
InferPol – and the control plane verification part – includ-
ing PickPolicies and CPVerification (which invoked
Minesweeper). The other parts completed in negligible times
and were thus ignored (e.g., TopoTrim completed within five
seconds for US Carrier and less than a second for BICS).

Table 2 shows the overall execution time (Overall) and how
it is split between data plane analysis (DPA) and control plane
verification (CPV) as a function of the topology, the num-

Topology k Candidates Specification Percent

BICS
1 2’526.9 1’008.1 40%
2 2’504.4 304.0 12%
3 2’482.1 57.6 2%

Columbus
1 13’290.2 4517.1 34%
2 13’150.4 350.4 3%
3 13’271.0 27.2 0.2%

US Carrier
1 93’416.2 17’908.3 18%
2 85’021.0 702.8 0.8%
3 98’837.6 6.8 0.01%

Table 3: The number of candidate policies and the number
of policies in the specification Config2Spec returns. Percent
shows the fraction of the policies of all candidate policies.

ber of failures (k), and the configuration type (Config). For
example, for the US Carrier topology with k = 3 and OSPF
configurations, Config2Spec completed within 43 minutes,
where 59% of that time was spent on data plane analysis.

The results show that even for the US Carrier topology
with its 158 routers and 189 links, Config2Spec mined the
specification in a reasonable time (within 2.7 hours, for OSPF,
and 13.7 hours, for BGP). The results also demonstrate that
the runtime mainly depends on the network size, secondly on
the failure model, and lastly on the configuration type. This
is expected: the larger the network, the larger the set of candi-
date policies and the set of concrete environments (whose size
also depends on the failure model). In contrast to the effect of
the network size on the execution times, the permissiveness
of the failure model shows a different trend: execution times
increase from k = 1 and k = 2, but drop for k = 3. This is
thanks to the topology-based trimming (§7), which becomes
very significant for k = 3 (or higher values of k). For the eval-
uated topologies, most router pairs are not 4-edge-connected,
thus many policies are pruned. We provide more details on
trimming in §8.3. The results show also that for k = 1, Con-
fig2Spec only performs data plane analysis. This is because
the number of concrete environments is significantly smaller
than the number of candidate policies throughout execution,
leading the RT predictor to favor data plane analysis. Lastly,
results show that for BGP configurations, the execution time
is higher than for OSPF configurations. This is mainly due
to Minesweeper, for which we observe a five to ten times
increase in the verification time for BGP compared to OSPF.

Table 3 reports the number of candidate policies and the
number of policies in the specification, for each topology and
failure model, averaged across the different configuration sets
and the configuration types. The reported number of candi-
date policies is the number of policies that hold for the first
concrete environment picked by Config2Spec (Config2Spec
always begins with data plane analysis). We consider this set
as the initial set of candidates, rather than all instantiations
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Figure 5: Config2Spec compared to the baselines of data plane
analysis and control plane verification on grid topologies and
different failure models. The bars of DPAnalysis and k = 3
are cut, and their maximum value is denoted next to them.

of the four policy types (Table 1), as the latter contains many
policies which no concrete environment satisfies.

The results indicate that as the network size increases, the
number of candidate policies increases, while the specifica-
tion size (i.e., the number of policies that hold for all concrete
environments) significantly drops. This demonstrates the chal-
lenge of Config2Spec to search in the large space of candidate
policies for the small set of policies that hold.

8.2 Comparison to Baselines

We compare Config2Spec to the two baselines in §2: (i) a data
plane analysis approach, which enumerates all data planes to
infer the specification, and (ii) a control plane verification ap-
proach, which verifies the candidate policies one by one. As
neither of the baselines scales to the larger networks consid-
ered in the last section, in this experiment, we use three grid
topologies of sizes: 4 by 5, 5 by 5 and 6 by 5. We generated
five sets of OSPF configurations per topology and used the
failure model Lsymbolic = L with k ranging from 1 to 3.

Fig. 5 shows the execution time of each approach as a
function of the topology and failure model. For k = 2 and
k = 3, Config2Spec outperforms the baselines: the data plane
analysis by 10.2x on average and up to 41.0x, and the control
plane verification by 3.8x on average and up to 8.3x. For k= 1,
data plane analysis is faster than Config2Spec because of
Config2Spec’s setup time (i.e., the verification of few policies
when initializing the predictors’ times, see §4). Still, the
overhead of Config2Spec is small (data plane analysis was
faster on average by 24 seconds and by up to 37 seconds).

The results also show that both baselines have benefits. For
less permissive failure models, data plane analysis performs
better than control plane verification, whereas for permissive
failure models it is the other way around. This demonstrates
the advantage of the dynamic combination of Config2Spec.

8.3 Domain-specific Techniques

We next study how the domain-specific techniques improve
Config2Spec’s performance. We study the following aspects:
(i) how the policy-aware sampler (§5.1) helps reducing the
number of concrete environments Config2Spec analyzes, and
(ii) how topology-based trimming (§7) and policy grouping
(§6) decrease the number of queries posed to the verifier.

Policy-aware sampler We compare the policy-aware sam-
pler (called Policy-Aware) to a baseline which randomly picks
a new concrete environment (called Random). We compare
them by instantiating PickCE with each approach and running
Config2Spec on the Topology Zoo topologies with the failure
model Lsymbolic = L and k = 3, and with five sets of OSPF
configurations and five sets of BGP configurations.

Table 4 shows the results. The first four columns show,
for each approach, how many concrete environments were
analyzed before Config2Spec transitioned to the verifier, and
how many policies remained to verify (i.e., the percentage
of remaining policies out of the policies that hold for the
first sample). For example, for BICS, Policy-Aware required
on average 36.4 samples before Config2Spec switched to
verification, and at this point the size of the candidate policy
set was reduced to 36.5% of the initial policy set (i.e., the set
of policies which hold for the first sample).

Generally, the smaller the set of remaining policies (i.e., the
closer the candidate set to the network specification is), the
better. As a secondary goal, the number of analyzed concrete
environments should be relatively small. Results indicate
that Policy-Aware always obtains a better reduction in the
size of the candidate set compared to Random. They also
show that on average Policy-Aware typically required fewer
samples than Random. However, we note that in 6 out of
the 30 experiments, Random switched to verification before
Policy-Aware did. This is not because Random made better
progress. In contrary, the TP predictor decided to switch, as it
observed that the concrete environments picked by Random
were not effectively pruning policies anymore.

The next two columns of Table 4 provide more statistics.
We checked, for each experiment, the relative size of the
candidate sets for both approaches when Config2Spec with
Policy-Aware transitioned to verification. For example, in
one experiment using BICS, Policy-Aware transitioned to
verification after 32 samples, and at that point the number
of candidate policies was 970, while for Random, after 32
samples, there were 1’124 candidate policies, making the
ratio 86.3%. In Table 4, Cands Ratio shows the average over
the ten runs. We also checked how many additional samples
Random required to reduce the candidate policies to (at most)
the size obtained with Policy-Aware. For example, in that
experiment for BICS, Policy-Aware required 32 samples to
reduce the candidates to 970 policies, while Random required
43. Hence, Random needed 11 additional samples. In Table 4,
Added Samples shows the average of this number. The re-



Policy-Aware Random Cands Added Policy-Aware Random
Topology Samples Candidates Samples Candidates Ratio Samples PickCE DPAnalysis PickCE DPAnalysis

BICS 36.4 36.5% 42.1 39.5% 89.7% 45.7 22.1 ms 1.4 s 0.5 ms 1.3 s
Columbus 71.0 16.6% 79.0 26.4% 60.5% 109.0 63.1 ms 8.3 s 0.7 ms 7.7 s
US Carrier 113.8 9.6% 122.1 18.6% 51.6% >500 358.2 ms 57.8 s 1.4 ms 51.6 s

Table 4: Comparison of the policy-aware sampler in PickCE (§5.1) and a random baseline. Samples is the number of samples
before Config2Spec switched to verifier. Candidates is the percentage of remaining candidate policies at that point. Cands
Ratio is the ratio of the candidate set sizes for Policy-Aware and Random when Config2Spec with Policy-Aware transitioned to
verification. Added Samples is the number of samples Random needed to reduce the candidate set to the size of the candidate
size with Policy-Aware. PickCE is the time to pick the next environment. DPAnalysis is the overall time to analyze a data plane.

sults indicate that Policy-Aware not only obtains a smaller
candidate set, but reaches it significantly faster.

The last four columns of Table 4 show execution times:
PickCE shows the execution time of the sampler, while DP-
Analysis shows the overall execution time of a single data
plane analysis (i.e., DPCompute and InferPol). Results show
that while Policy-Aware takes more time than Random (as
expected), the overhead is negligible compared to the overall
execution time of the data plane analysis.

Topology-based trimming and policy grouping We next
evaluate the topology-based trimming and policy grouping
in reducing the number of queries to the verifier. We ran the
experiments for the three topologies and the failure model
with k = 2 and k = 3 (for k = 1, Config2Spec only performs
data plane analysis §8.1). We measured how many queries
to the verifier each technique saved. In every experiment, we
recorded the number of policies Config2Spec had the first time
it transitioned to the verification. This number, denoted B (for
baseline), provides the number of queries to the verifier if
we did not use either technique. We also recorded how many
policies were pruned thanks to topology-based trimming. We
count each policy that has been pruned as one saved query
for the verifier, and denote the overall saved queries by T (for
trimming). Also, we recorded how many queries were posed
to the verifier (when employing policy grouping), and denote
the number of queries by G (for grouping).

Fig. 6 shows the percentage of remaining queries after
each optimization: B−T

B % for trimming and G
B % for policy

grouping. For example, for BICS and k = 2, trimming pruned
51.1% of the policies. Policy grouping saved 41.5% and re-
duced the overall queries to the verifier to 9.6%. Overall, the
reduction was 90.3%. The results show that the combination
of trimming and policy grouping can reduce the number of
queries to as little as 0.04%. Trimming is especially power-
ful for the larger topologies and for more permissive failure
models (k = 3). The policy grouping also significantly re-
duces the number of queries to the verifier. The best case is
for the largest network, where trimming reduced the number
of queries to 1.15% and then policy grouping reduced it to
0.04%, compared to the baseline.
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Figure 6: Reduction in the number of queries to the verifier
thanks to topology-based trimming and policy grouping.

8.4 Running Config2Spec on Internet2

Finally, we demonstrate that Config2Spec can handle real
configurations. For this, we took a publicly available configu-
ration of the Internet2 network from May 2015 [8]. For Bat-
fish to be able to parse this configuration, we had to remove
multiple lines from it. Mostly, these parts concerned log-
ging (e.g., system dump-on-panic;), anonymization left-
overs (e.g., Firewall Stanza Removed) and other (for our
purposes) irrelevant parts (e.g., bfd-liveness-detection
no-adaptation;). For Minesweeper to be able to verify
our queries, we had to remove parts of the BGP route-maps
(community-matches and empty prefix-list matches). This
does not affect the output, as we only mine the specification
for internal prefixes, since no external peers are connected. In
total, we had more than 90k lines of configuration. The topol-
ogy consisted of 10 routers and 18 links. For a failure model
with Lsymbolic = L and k from 1 to 3, Config2Spec required
32, 314, and 1’805 seconds to infer the network specification.
It consisted of 3’962, 3’405, and 3’339 policies. The high
number of policies, even for k = 3, stems from the fact that
the five routers on the east-coast almost form a clique.



9 Related Work

In this section, we survey related work across five dimensions:
specification mining, data plane analysis, control plane verifi-
cation, network specification languages, and counterexample-
guided inductive synthesis.

Specification mining Our work is inspired by works on spec-
ification mining [1], where high-level specifications are auto-
matically inferred from low-level execution of programs. One
example is Daikon [11], which dynamically detects program
invariants (e.g., x 6= 0) by running the program and observing
the values the program computes. For computer networks,
Xie et al. [31] show how to compute the reachability spec-
ification for a given failure model based on the network’s
configuration. They compute the reachability upper bound –
all policies that hold for at least one concrete environment –
and lower bound – all policies that hold for all concrete envi-
ronments. To scale, only an approximation of the bounds is
computed. In contrast, Config2Spec computes the exact lower
bound of reachability, as well as other policies, and thereby
obtains a precise specification. Benson et al. [6] show how
to mine reachability policy units, a high-level abstraction of
pair-wise reachability, from network configurations for a sin-
gle concrete environment. Like Config2Spec, it relies on data
plane analysis. Unlike Config2Spec, failure models are not
supported. Other works [7, 15] assess the complexity of man-
aging the network and its overall health, i.e., the frequency
of performance and availability problems, by analyzing its
configurations.

Data plane analysis Config2Spec relies on a data plane an-
alyzer. Several works exist and they differ mostly in their
input. There are tools that require the forwarding state as
input [16–18, 23], and others that compute the forwarding
state from the network configuration [13]. These tools enable
to check various properties, such as reachability and isolation,
for the single forwarding state being analyzed.

Network verification Config2Spec also relies on a control
plane verifier. Several works offer solutions for network verifi-
cation, supporting different kinds of queries. Minesweeper [4]
relies on an SMT-solver, and is currently the most general
solution: it supports various properties (e.g., reachability,
loop-freedom, router equivalence) and multiple (interacting)
routing protocols. ERA [12] creates a unified control plane
model that mainly allows to reason about reachability proper-
ties under multiple routing protocols. ARC [14] constructs
an abstract graph representation of the data plane computa-
tion and supports various properties: reachability, isolation,
waypointing and control plane equivalence. Many other tools
focus on a single protocol such as Bagpipe [30].

Network specifications Many works introduce different net-
work specification languages, varying in their expressiveness.
Some allow to capture traffic classes at the path-level [3,5,27],

while others use a higher-level abstraction describing traffic
classes and high-level policies such as reachability and way-
pointing [24]. Despite the differences, Config2Spec’s output
can be used by other tools, such as NetKAT [3], whose lan-
guage can accommodate the policies we consider.

Counterexample-guided inductive synthesis (CEGIS)
CEGIS is a technique in program synthesis in which examples
guide the search for the target program [25, 26]. Technically,
from an initial set of examples (which may be empty), the
synthesizer proposes a candidate program consistent with the
examples, and introduces it to a validator. The validator ei-
ther confirms the candidate is the target program or returns
a counterexample. The counterexample is added to the set
of examples, guiding the synthesizer to look for a different
candidate. Config2Spec can be seen as a synthesizer looking
for (all) policies that hold for a given network configuration
and failure model. Like CEGIS, it is guided by examples
(the data planes) and a validator (the verifier). Unlike CEGIS,
Config2Spec looks for all valid policies (and not a single one).
This poses a greater challenge, both in terms of the search
space and the burden on the validator. To cope, Config2Spec
cleverly samples examples to prune the search space (without
the help of the validator), trims and groups policies to save
queries to the validator, and dynamically switches between
sampling and verifying to expedite the search.

10 Conclusion

We introduced Config2Spec, a scalable approach for mining
a network’s specification from its configuration and a failure
model. The key insight is to dynamically switch between data
plane analysis and control plane verification. To scale further,
we integrated three domain-specific techniques: (i) policy-
aware sampling to pick concrete environments which are
more promising for policy pruning, (ii) policy grouping to
group queries and thereby reduce verification overhead, and
(iii) topology-based trimming to prune policies infeasible for
the given topology and failure model. We evaluated Con-
fig2Spec on different topologies and against two baselines.
The results show that Config2Spec scales to large networks,
unlike the baselines, and that our domain-specific techniques
significantly contribute to the scalability.
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Algorithm 1: Config2Spec(conf, F )
Input : conf: The network configuration.

F : the failure model (i.e., Lup, Ldown, Lsymbolic, k).

Output :A specification: the set of all policies that hold for the
given configuration and failure model.

1 cands← allPolicies()
2 verified, prevEnvs, lastFwds← /0, /0, /0

3 T T P
veri f y,T

RT
veri f y← initVerificationTimes()

4 T T P
analysis,T

RT
analysis← 0,0

5 totalEnvs← ∑
k
j=0

(|Lsymbolic|
j

)
6 while cands 6=verified do
7 DP-RT← T RT

analysis · (totalEnvs−|prevEnvs|)
8 CP-RT← T RT

veri f y · |cands\verified|
9 if T T P

analysis < T T P
veri f y or DP-RT < CP-RT then

10 env← PickCE(F , cands\verified, prevEnvs,
lastFwds)

11 lastFwds, T RT
analysis ← DPCompute(env, conf)

12 pols = InferPol(lastFwds)

13 T T P
analysis← (cands\pols = /0) ? ∞ :

T RT
analysis

|cands\pols|
14 cands← cands∩pols
15 prevEnvs← prevEnvs∪{env}
16 if |prevEnvs| = totalEnvs then verified← cands

17 else
18 pols← PickPolicies(cands, verified)
19 cex, T RT

veri f y← CPVerification(pols, conf,F )
20 if cex =⊥ then
21 verified← verified∪pols

22 T T P
veri f y←

T RT
veri f y
|pols|

23 else
24 cands← cands\{p ∈ pols| cex violating p}

25 T T P
veri f y←

T RT
veri f y

{p∈ pols| cex violating p}

26 return verified

A Main Algorithm of Config2Spec

Here, we present the main algorithm of Config2Spec (Algo-
rithm 1). Our algorithm takes as input the configuration conf
and a failure model F consisting of Lup,Ldown,Lsymbolic and
k. It outputs all policies which hold for this setting. The algo-
rithm maintains the time estimates presented in §4 as well as
a few sets. We next present these sets and the initialization of
the time estimates, and afterwards the algorithm flow.

Main data structures The algorithm maintains four sets:
cands, verified, prevEnvs, and lastFwds.

The cands set contains all policies that are still candidates
for the network specification (i.e., unclassified policies and
verified policies). That is, it is a superset of the network spec-

ification. When the algorithm terminates, cands is exactly
the set of policies which hold. During the execution, policies
which are discovered as violations are removed from cands.
Initially, this set consists of all reachability, isolation, load
balancing, and waypoint policies. Although we focus on these
policies, our algorithm easily extends to any policy supported
by the data plane analyzer and control plane verifier.

The verified set is the set of all policies that the verifier
proved to be part of the network specification. That is, it is a
subset of the set of policies which hold. When the algorithm
terminates, verified is exactly the network specification.
During the execution, policies which are discovered as true
policies are added to it.

The prevEnvs set contains all previously analyzed con-
crete environments, while the lastFwds set contains the for-
warding graphs of the last analyzed concrete environment,
which is used to pick the next concrete environment.

Initialization of predictors’ times As discussed in §4, our
predictors rely on four time estimates: T T P

analysis, T T P
veri f ier,

T RT
analysis, and T RT

veri f y. These are initialized as discussed in §4,
where to initialize T T P

veri f y and T RT
veri f y, Config2Spec executes

the verifier on M policy sets by running M times Line 18–
Line 25, which are shortly explained.

Flow After initialization, Config2Spec runs in a loop which
terminates when verified equals cands, indicating that both
are equal to the network specification. At each iteration of
the loop, Config2Spec first computes the predictors to pick
between the data plane analyzer and the control plane verifier.
The TP predictor checks T T P

analysis < T T P
veri f y. The RT predictor

checks DP-RT <CP-RT , where DP-RT and CP-RT are the
remaining times of the analyzer and verifier.

If the data plane analysis is chosen to be executed (Line 10–
Line 16), Config2Spec invokes PickCE to pick the next con-
crete environment. It then calls DPCompute, to compute the
forwarding graphs, and InferPol, to compute all policies
from cands that hold for this environment. Afterwards, it
updates the time estimates T RT

analysis (to the execution time of
DPCompute) and T T P

analysis (to the execution time per policy
which was pruned in this iteration). Then, it retains in cands
only the policies that hold for the given environment and up-
dates prevEnvs with the new environment. Finally, it checks
whether there are still more concrete environments to analyze.
If not, then cands contains only true policies, and so it sets
verified to cands.

If the control plane verification is chosen (Line 18–
Line 25), Config2Spec picks a set of policies to ver-
ify via PickPolicies. It then calls the verifier via
CPVerification. The result is a counterexample cex, which
may be ⊥, to indicate that all policies hold, or a concrete en-
vironment if some of the policies are violated. If cex is ⊥, all
policies are added to verified and T T P

veri f y is set to the ratio



of the execution time and all policies (since all have been
classified). If cex is not ⊥, then Config2Spec removes from
cands the policies which are violated by cex, and sets T T P

veri f y
to the ratio of the execution time and violated policies (since
only they are classified).

Correctness We next discuss the correctness of Con-
fig2Spec. First, Config2Spec is precise. That is, it returns
all policies which hold and only the policies which hold. The
correctness argument relies on the data plane analysis and
control plane verification being precise with respect to their
tasks: the data plane analysis returns all and only those poli-
cies which hold for the given concrete environment, while
the control plane verification returns a counterexample if and
only if some of the given policies do not hold. With this
assumption, we can prove the invariant that (i) cands always

contains the network specification (i.e., the specification is a
subset of it) and (ii) verified is always contained in the net-
work specification. Because the algorithm terminates when
these sets are equal, we get the guarantee.

Second, Config2Spec always terminates. For this, we rely
on the data plane analysis and control plane verification to al-
ways terminate. We then make the claim that at each iteration
either a new concrete environment is analyzed (guaranteed
by PickCE) or at least one policy is classified (guaranteed by
the control plane verification). Since the number of concrete
environments and policies is finite, at some point either all
policies are classified – at which point cands=verified and
the algorithm terminates – or all concrete environments have
been analyzed – at which point, Config2Spec sets verified
to cands (Line 16), thereby terminating the algorithm.
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