
Snowcap: Synthesizing Network-Wide Configuration Updates
Tibor Schneider

ETH Zurich, Switzerland

sctibor@ethz.ch

Rüdiger Birkner

ETH Zurich, Switzerland

rbirkner@ethz.ch

Laurent Vanbever

ETH Zurich, Switzerland

lvanbever@ethz.ch

ABSTRACT
Large-scale reconfiguration campaigns tend to be nerve-racking for

network operators as they can lead to significant network down-

times, decreased performance, and policy violations. Unfortunately,

existing reconfiguration frameworks often fall short in practice as

they either only support a small set of reconfiguration scenarios or

simply do not scale.

We address these problems with Snowcap, the first network

reconfiguration framework which can synthesize configuration

updates that comply with arbitrary hard and soft specifications,

and involve arbitrary routing protocols. Our key contribution is

an efficient search procedure which leverages counter-examples

to efficiently navigate the space of configuration updates. Given a

reconfiguration ordering which violates the desired specifications,

our algorithm automatically identifies the problematic commands

so that it can avoid this particular order in the next iteration.

We fully implemented Snowcap and extensively evaluated its

scalability and effectiveness on real-world topologies and typical,

large-scale reconfiguration scenarios. Even for large topologies,

Snowcap finds a valid reconfiguration ordering with minimal side-

effects (i.e., traffic shifts) within a few seconds at most.

CCS CONCEPTS
• Networks → Network management; Network reliability;
Network simulations; • Theory of computation → Modal and

temporal logics; Logic and verification;

KEYWORDS
Network analysis, Configuration, Migration

ACM Reference Format:
Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snow-
cap: Synthesizing Network-Wide Configuration Updates. In ACM
SIGCOMM 2021 Conference (SIGCOMM ’21), August 23–28, 2021, Vir-
tual Event, USA.ACM, New York, NY, USA, 17 pages. https://doi.org/
10.1145/3452296.3472915

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00

https://doi.org/10.1145/3452296.3472915

rx

rfw

r1

r2

10

10⇝ 20

5⇝ 9

8

20

b

c

a

Figure 1: This scenario consists of adding an eBGP session a

and adapting two link weights: b and c , while: (i) ensuring
traffic from rx always flows via rfw; and (ii)minimizing traf-
fic shifts. Two orderings achieve both goals: b c a and c b a .

1 INTRODUCTION
Network operators reconfigure their network literally every day [17,

27, 39, 40, 45]. In a Tier-1 ISP for example, network operators modify

their BGP configurations up to ≈20 times per day on average [45].

While most of these reconfigurations are small (e.g., adding a

new BGP session), a non-negligible fraction is large-scale. Common

examples include switching routing protocols (e.g., from OSPF to

IS-IS [19]), adopting a more scalable routing organization (e.g.,

route reflection [37]), or absorbing another network [23]. As an

illustration, Google’s data center networks have undergone no less

than 5 large-scale configuration changes within the last decade [36].

Small or large, network reconfigurations consist in modifying

the configuration of one or more network devices. Due to the dis-

tributed nature of networks, applying all reconfiguration commands

atomically—on all devices—is impossible. Instead, the network nec-

essarily transitions through a series of intermediate configurations,

each of which inducing possibly distinct routing and forwarding

states. Doing so the network might temporarily violate important

invariants or suffer from performance drops even if both the initial

and the final configuration are perfectly correct and verified.

While such reconfiguration issues are transient, they are also

disruptive. Alibaba revealed that the majority of their network inci-

dents (56%) resulted from operators updating configurations [29].

Our case studies (§2) confirm this: even when following best prac-

tices, reconfiguring a network often causes numerous forwarding

anomalies (e.g., loops or blackholes) and unnecessary traffic shifts.

Take the scenario in Fig. 1 as an example. The operators wish

to increase their capacity by establishing a new eBGP session on

r1 while, for security reasons, ensuring traffic from rx keeps flow-

ing through rfw. For performance reasons, they also want to avoid

any unnecessary traffic shifts during the reconfiguration. The first

requirement is hard: it has to be maintained throughout the recon-

figuration. In contrast, the second requirement is soft: it should be

33

https://doi.org/10.1145/3452296.3472915
https://doi.org/10.1145/3452296.3472915
https://doi.org/10.1145/3452296.3472915
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

violated as little as possible. The scenario involves applying 3 com-

mands: adding the BGP session a and adapting two link weights

b and c .1 For simplicity, we assume that there are no failures.

In this example, both the initial and the final configurations

comply with the hard requirement. This is however not the case

for most intermediate forwarding states. Indeed, applying a first

makes traffic from rx bypass the firewall as rx would then forward

traffic to r1 via its direct link. Applying b before a avoids this

bypass. The same holds for traffic shifts: most intermediate states

exhibit some. For example, applying a before c leads to a shift in

which the traffic from rx (transiently) leaves via r1 instead of r2.
Only two orderings b c a and c b a out of the 3! = 6 possible

comply with the hard requirement while optimizing for the soft

one. Finding those manually is generally hard.

Given its relevance, researchers have developed multiple tools

to seamlessly reconfigure networks. We can broadly classify them

in two categories depending on whether they modify the configura-

tions in-place (one command at a time, as in our example above) or

rely on a technique commonly known as Ships-In-The-Night (SITN),
where routers are running multiple configurations in parallel.

While useful, both categories suffer from limitations in terms

of (i) the reconfiguration scenarios they can support; (ii) the guar-
antees they can provide; and (iii) the overhead they impose. In

particular, while “in-place” reconfiguration tools do not impose any

extra overhead on the network, they only support a restricted set

of scenarios and properties such as preserving reachability when

changing an IGP link weight [13] or when removing a BGP ses-

sion [12]. A bigger problem though is that their restricted model

makes them unsafe to use in multi-protocol environments [42]. In

contrast, SITN-based reconfiguration tools can support a larger set

of scenarios and properties, at the price of duplicating the routing

and forwarding table on all routers [43–45]. Besides, not all routers

support running duplicated control planes in the first place [9].

Several works address the problem of safely updating Software-

Defined Networks (SDN) [24, 31, 32] from one forwarding state to

another. These techniques, however, do not apply to distributed

routing protocols found in the vast majority of networks [6].

A fundamental research question is still open: Is it possible to
automatically and safely reconfigure a network running arbitrary
protocols without imposing any extra overhead on the network?

Snowcap. We answer positively and present Snowcap, a recon-
figuration framework which can synthesize and deploy safe config-

uration updates, for arbitrary protocols and arbitrary correctness

properties. Given (i) the initial and the final configurations; and (ii)
hard and soft specifications (expressed as a linear temporal logic

(LTL) formula and as an objective function, respectively), Snowcap
automatically generates an ordering of the reconfiguration com-

mands which satisfies the hard specifications, while optimizing for

the soft ones. Snowcap’s runtime controller then applies these com-

mands one-by-one to the live network, appropriately waiting for

network convergence in-between them. Doing so enables Snowcap
to tightly control the intermediate states.

1
Adapting the weights allows operators to preserve rx ’s original paths in the final

configuration, while allowing other routers to use the new session. Note that lowering

the local preference on the new session would prevent it from being used at all,

nullifying the goal of increasing capacity.

Snowcap’s specification language supports path-based proper-

ties and resilience to link failure. Path-based properties limit for-

warding to only use paths matching a regular expression. This

allows, for example, enforcing security properties, such as requir-

ing traffic to pass through a middlebox. In addition, Snowcap allows
requiring that properties are satisfied under any link failures. This

makes Snowcap practical for networks which have to provide high-

percentile reachability guarantees even during reconfigurations

and link failures (e.g., five nines).

Key challenges and insights. The main technical challenge we

face in designing Snowcap is to efficiently navigate the space of

possible reconfiguration orderings. This is hard as, besides its size

(there aren! orderings givenn commands to apply), the search space

is typically sparse (very few orderings adhere to the specification,

cf. our example above). Taken together, these characteristics make

simple search strategies like random sampling extremely inefficient.

We address that by designing an efficient counter-example-guided

search procedure. More specifically, Snowcap greedily builds a re-

configuration ordering leveraging the hard and soft specifications

to guide the search. Upon encountering an ordering which vio-

lates the hard constraints, Snowcap uses this counter-example to

identify the (minimal) ordering constraint (which we call dependen-
cies). Snowcap then restarts its exploration taking these constraints

into account, effectively pruning the search space in a divide-and-

conquer fashion. As we show, this counter-example-guided ap-

proach tends to work particularly well in practice as it neutrally

adapts to different reconfiguration scenarios.

System & results. We demonstrate a prototype of Snowcap2

which currently supports Border Gateway Protocol (BGP) and link-

state Interior Gateway Protocols (IGPs), and can easily be extended

to other protocols. Our prototype not only synthesizes a “good”

reconfiguration plan, but also applies it to the live network au-

tomatically. Our evaluation shows that Snowcap scales to large

network topologies and reconfiguration scenarios: it finds compli-

ant reconfiguration orderings within a few seconds. Snowcap also

finds significantly more optimized orderings than the baselines.

Contributions. In summary, our main contributions are:

• A framework which poses safe reconfiguration as an optimiza-

tion problem with hard and soft constraints.

• A specification language based on LTL.

• A generic search procedure which uses counter-examples to

efficiently find optimized reconfiguration orderings.

• An implementation of our approach, together with an evaluation

on real network topologies and scenarios.

Limitations. Snowcap guarantees that all properties are satisfied
when the network has converged. However, it cannot always guar-

antee that during convergence as transient anomalies (like forward-

ing loops and blackholes) are inherently part of the convergence

process of distributed protocols and thus outside of Snowcap’s con-
trol. These effects can (and do) occur even during normal operation

of the network. While this means that Snowcap cannot guarantee

general reachability properties in-between updates, we prove that

it can guarantee path-based properties during convergence.

2
Available at https://github.com/nsg-ethz/snowcap

34

https://github.com/nsg-ethz/snowcap

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Insert-before-remove

Random order

0% 85% 100%

0%

27%

50%

75%

89%

100%

Error Rate

C
D
F

Figure 2: The reconfiguration plans based on both random
order and best practice (“insert-before-remove”) often vio-
late reachability when moving from an iBGP full mesh to a
route reflector configuration.

2 MOTIVATION
We motivate that careful planning is necessary to reconfigure a

network safely and with minimal side-effects by considering two

common and typical reconfiguration scenarios, which are given

priority in the popular “Network Mergers and Migrations” book

for Junos [23]. First, we show that forwarding anomalies (e.g., for-

warding loops and blackholes) can easily occur during an iBGP re-

configuration, even when following best practices. Then, we show

the difficulty of finding a reconfiguration with minimal side-effects

(e.g., traffic shifts) in a network acquisition scenario.

2.1 Case Study: iBGP Reconfiguration
We study the prevalence of forwarding anomalies by reconfiguring

80 networks from the Topology Zoo collection [28] from an iBGP

full mesh to a route reflector topology.
3

For every topology, we randomly generate 10 sets of IGP weights

and choose the router with the highest degree as the designated

route reflector (following best practices [20]). We consider two

reconfiguration strategies: First, we simulate a careless operator

blindly reconfiguring the network by randomly choosing the order

of routers in which to apply the changes. Second, we simulate an

operator following the recommended reconfiguration strategy for

this scenario: “insert-before-remove” [23]. That is, we (randomly)

add all the iBGP route reflector sessions before removing the old

ones. For each topology, set of IGP weights, and reconfiguration

strategy, we simulate 10 000 different orderings.

Fig. 2 shows a CDF of the percentage of orderings that led to a

blackhole or forwarding loop (i.e., the error rate) across our experi-

ments. For 50% of the networks, we see that a “careless” operator

introduced forwarding anomalies 85% of the time. In addition, a

“careless” operator would create at least one forwarding anomaly in

73% of the networks (only 27% of the networks exhibited no issues

in all orderings). In contrast, we see that even “best practice” opera-

tors still introduced forwarding anomalies in 25% of the topologies,

and for more than 10% of the topologies, their error rate is over 85%.

“Best practice” is arguably better than the careless operator, but still

far from zero—hence the need for Snowcap, which performs all

these reconfigurations without disruptions.

3
A route reflector distributes BGP routes to its clients, eliminating the need for estab-

lishing an iBGP full-mesh which scales poorly [4].

0 0.5 1 1.5

Uninett (125)

Renater (61)

Iij (83)

Harnet (15)

Chinanet (65)

Cost

Random order Theoretical minimum

Figure 3: Different reconfiguration usually introduce un-
necessary traffic shifts The y axis lists 5 different network
topologies from Topology Zoo. The x axis shows the cost,
i.e., number of traffic shifts (§5.3).

2.2 Case Study: Network Acquisition
In addition to forwarding anomalies, a reconfiguration can also

lead to unnecessary traffic shifts, causing congestion or jitter. It is

therefore crucial to minimize their occurrences whenever possible.

We study the prevalence of traffic shifts in a merging scenario.

More specifically, we take 42 networks from the Topology Zoo

collection [28]
4
which we randomly partition in two distinct con-

nected components, and assign one router in each partition to be a

reflector. We then merge the two networks, during which we add

several links between the two networks, generate an iBGP session

between the two route reflectors, and rescale all link weights in

one network to match the other’s.

Fig. 3 compares the number of traffic shifts (cost) triggered dur-

ing the entire reconfiguration process (cf. §5.3) between a random

order to the theoretical minimum. We compute the ideal costs by

assuming that the entire reconfiguration could be performed in a

single step. Again, we see that random reconfigurations introduce

far more traffic shifts than the theoretical minimum—hence, justify-

ing once more the need for a tool like Snowcap, which merges the

two networks with significantly lower costs (cf. §6.2). The extended

figure with all tested topologies can be found in App. A.

3 OVERVIEW
We now provide an overview of Snowcap and how it computes

reconfiguration orderings using a running example.

Sequence notation. Throughout this paper, we denote an ordered

sequence of commands a , b , c , and d as a b c d . When simulat-

ing such a sequence, we see whether it satisfies or violates the hard

specification ϕ. When it satisfies the specification, we color it green:

d c a b |= ϕ. When it violates the specification, we split it in a green

and a red part: a b c d ̸ |= ϕ. The green part shows all commands

that still satisfy the specification, while the red part starts with the

first command that violates it. For example, the sequence a b c d

does not satisfy the specification ϕ and the first command that

violates it, is c , which we call the problematic command.

Example. Consider the network in Fig. 4 which consists of seven

routers organized in a route reflection hierarchy with rr acting

4
We only consider a subset of the networks from §2.1 as not all networks contained

enough devices, see App. A for more details.

35

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

(a) Initial configuration

rr

r1

r2

t1

t2

b1

b2

1

1

1

1

1 1

10

10

10

10

p

p

p

(b) Final configuration

rr

r1

r2

t1

t2

b1

b2

p

p

p

a

b

c

d

(c) Network at c

rr

r1

r2

t1

t2

b1

b2

(d) Network at a b d

rr

r1

r2

t1

t2

b1

b2

w
Link, with IGP

weight w

p eBGP session

(prefix p)
iBGP session

(route reflector)

Forwarding

loop

Figure 4: Running example with 7 routers, where routers b1, b2 and rr receive an advertisement for the same prefix p. During
the reconfiguration, three sessions must be removed (a , b , and c), and one added (d).

Input

Ci Cf

initial & final config

hard spec

ϕ

soft spec

f

Live Network

Snowcap

Config “Differ”

a -
b -
c -
d +

1

Search Tactics §4

Exploration §4.1

a b c d

b c d

c d

d c
2 7

Counter-example-guided Search §4.2

Reduce

a b c

b c

c

3

Solve

4 6

Extend

5

c

c

d c

a b c

d c

Simulator

Runtime

Controller

reconfigure

& monitor

8

a b c d

ϕ?

a b c d

ϕ ϕ

d c a b

valid

ordering

Figure 5: Snowcap finds a command ordering to safely transition from configuration Ci to Cf . The commands (a , b , c , d)
correspond to the example in Figure 4.

as the root. Route reflection is used as an alternative to an iBGP

full-mesh topology, which scales poorly. Any router in the iBGP

topology only advertises routes to its route reflectors if they are

learned from an external peer, or a route reflector client. A route

reflector will always advertise its selected route to all of its clients [4,

22]. Three routers (b1, b2 and rr) receive the same external route

for a prefix p (Fig. 4a). The reconfiguration scenario modifies the

hierarchy by removing three iBGP sessions (a , b , and c) and

adding one (d) (Fig. 4b). Initially, both r1, r2 and t2 select the route
from b2 for prefix p (where r2 reaches b2 via r1), while t1 selects b1.
After the reconfiguration, all routers will select b1 to reach p.

For simplicity, we assume that the operator is only interested in

preserving reachability during the reconfiguration. Doing so is not

easy and requires to add and remove sessions following a precise

order. For example, applying c first (i.e., removing the session

between b2 and r1) results in a loop between r1 and r2 (Fig. 4c).

Indeed, removing the session causes r1 to select b1 instead of b2 to
reach p. Doing so it starts forwarding traffic to r2; A loop is created

as r2 still learns (and prefers) b2 to reach p and uses r1 as next hop.

Similarly, by applying d (i.e., adding the session between b1 and
r2) after a and b causes a forwarding loop between t1 and t2, as
t1 only learns the route via b2 from r1, and t2 only learns b1 from r2.
Hence, t1 will forward traffic to t2, which itself will loop the traffic

back to t1 (Fig. 4d). Snowcap automatically computes the ordering

d c a b which preserves reachability.

Inputs. Snowcap takes 4 inputs: the initial and final configuration,
Ci and Cf ; together with the hard and soft specification, ϕ and f .

The hard specificationϕ is an LTL formula that has to be satisfied

throughout the reconfiguration campaign. LTL allows operators to

precisely specify policy transitions, as required during reconfigu-

rations. For example, an operator can mandate traffic to first pass

through the old firewall and then switch to the new one. In our

running example, the reachability requirement is expressed with

the formula ϕ = G
∧
r V(r ,p,∗), which globally (G) mandates a valid

path (V) for traffic from any router r to reach a specific prefix p.
The soft specification is a function f that maps a sequence of

network states to a cost: f : Sn 7→ R, which Snowcap uses to guide

36

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

its search towards better orderings from an operational perspective.

As an example, to reduce the number of traffic shifts, the cost

function f should be chosen to sum up the number of paths that

change from every state to the next one (cf. §5.3).

Workflow (Fig. 5). Starting from the inputs, Snowcap reconfig-

ures the network in three consecutive steps:

(1) the Config “Differ” first computes the set of commands to

transition from Ci to Cf (a , b , c , d in our example);

(2) the Search Tactics then find a valid ordering of these com-

mands satisfying the hard specification ϕ, while greedily opti-

mizing for the soft specification f . The tactics use a simulator

to compute the network state at each step;
5

(3) the Runtime Controller finally applies the valid command

ordering (here, d c a b) to the live network.

Search tactics (§4). The core of Snowcap is its search tactics

which leverage counter-examples to efficiently navigate and prune

the search space. At a high-level, our tactics explore different order-

ings until they hit a counter-example, i.e., an ordering violating the

hard specification ϕ. It then aims to learn why this ordering does

not work by finding dependencies among commands (e.g., c must

always be applied after d) to iteratively prune the search space.

The strength of the search tactics lies in the interaction of two

phases, which allow Snowcap to adapt to the characteristics of

every reconfiguration scenario: Exploration (2 , 7) and Counter-
example-guided Search (3 — 6).

Phase 1: Exploration. The exploration phase quickly analyzes

different command orderings by traversing the search space in a

Depth First Search (DFS) manner, greedily following the direction

that minimizes f . Once Snowcap finds itself in a dead end, with no

commands satisfying ϕ, it switches to the second phase to resolve

the violations it found.

In our example, Snowcap first applies a , followed by b . In this

state however, neither command c nor d can be applied as both

induce a forwarding loop. Before backtracking, Snowcap attempts

to identify and resolve the hidden dependency.

Phase 2: Counter-example-guided search. In this phase, Snowcap
finds dependencies by examining the command orderings violating

the specification and resolving them. It works in three steps: (i)
Reduce; (ii) Solve; and (iii) Extend.

In Reduce, Snowcap looks for the minimal set of commands that

still violate the hard specification. In Solve, Snowcap then tries to

find a valid ordering of the reduced set of commands, using the

same approach as in the Exploration phase, and returns a valid

ordering of these commands (if it exists) as one group, which we

call a dependency group. If Solve does not find a solution, Snowcap
performs Extend, introducing yet unconsidered commands, which

might resolve the reduced problem. Once a dependency is found,

Snowcap remembers it and continues the exploration.

Coming back to our example, Snowcap 3 removes both com-

mand a and b when considering the input ordering a b c . This

is because applying c before d always results in a forwarding

loop between r1 and r2. Skipping the Solve phase 4 , Snowcap tries

5Snowcap could also use any other network analyzer such as ARC [16], Batfish [10],

Crystalnet [30], C-BGP [33], Minesweeper [5], or NV [18].

to extend 5 the current problem. In fact, Snowcap notices that

applying d before c preserves reachability. Treating c d as a

single command, Snowcap switches back to the exploration phase

7 and finds the valid reconfiguration ordering a b c d .

Runtime controller. Finally, the runtime controller performs the

reconfiguration by applying one command after the other according

to the synthesized ordering until the network transitioned from the

initial to the final configuration. After each command, the controller

monitors the network state and waits for it to converge. Only then,

it proceeds to apply the next command.

4 SEARCH TACTICS
We now explain how Snowcap’s search tactics find a safe reconfigu-

ration plan. First, we show how Snowcap explores the search space

with a simple, yet effective DFS traversal (§4.1). Then, we explain

how Snowcap speeds up the search by learning and resolving com-

mand dependencies, effectively pruning the space (§4.2). Finally,

we present how Snowcap finds an optimal, valid ordering (§4.3).

In this section, we assume that we are given an oracle that deter-

mines whether a specific ordering o of the commands satisfies the

hard specification: o |= ϕ. It identifies the problematic command

violating the specification, and the “reason” ϵϕ (o) for that, i.e., the
violated part of the specification.

4.1 Simple Exploration
In the following, we present how Snowcap navigates the search

space of all possible command orderings. We motivate Snowcap’s
DFS traversal based on an intuitive example.

The search space of all orderings is large and sparse, i.e., most or-

derings are invalid, rendering a random sampling approach useless.

However, we can improve on the random approach by analyzing

previous samples and adapting the search accordingly. If a certain

sequence of commands, such as c in our running example (Fig. 4),

violates the specification, there is no point in trying orderings which

start with that invalid sequence (e.g., c a b d , c a d b , etc.).

Hence, we can approach the search for a valid ordering as a

traversal of a tree, in which nodes represent orderings (only leaves

are complete orderings), and traversing an edge means applying

one of the remaining commands. Snowcap traverses this tree in

a Depth First Search (DFS) manner, only exploring valid options

by backtracking whenever a command violates the specification.

Note, this exploration is complete, i.e., it finds a valid ordering, if

and only if such an ordering exists.

Intuitively, the exploration prunes orderings which start with a

known, invalid sequence. While this approach works well in many

cases, it does not yet understand the underlying problem of these

sequences. In fact, the exploration algorithm quickly reaches its

limits if applying one command early on leads to problems towards

the end of the reconfiguration. This means a command early in the

sequence depends on one that appears only several steps later. Such

dependencies have no immediate effect.

Dependencies without immediate effect. These dependencies are
groups of commands that need to be applied in a specific order. If

that order is not met, the specification is not violated immediately,

but at a later command (see App. B for a formal definition). The

37

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

Algorithm 1: Counter-example-guided Search

Input :Groups G, an ordering o of G and the spec. ϕ
1 R ← Set of groups not in o
2 or ← Reduce(G, o, ϕ) using Alg. 2
3 loop
4 os ← Solve(G, or , ϕ) using §4.1
5 if os , ∅ then return os
6 or ← Extend(G, or , R, ϕ) using Alg. 3
7 if or = ∅ then return ∅
8 R ← R without all groups in or

exploration approach struggles with such situations as we show on

our running example (Fig. 4): The sequence a b is valid, but in this

state, both remaining options a b c and a b d violate the specifi-

cation as they result in a forwarding loop. Imagine that additional

commands { x1 , . . . , xn } exist, which are independent from the de-

pendency group (e.g., increasing the link weights to router rr). Our

simple exploration tries all possible permutations of x1 , . . . , xn ,

before finally backtracking to solve the actual problem.

4.2 Finding Dependencies
In the following, we explain how Snowcap overcomes the limitation

of the simple exploration by actively searching for dependencies

without immediate effect and learning how to resolve them. By

finding and resolving these dependencies in a divide-and-conquer

fashion, Snowcap prunes the search space even further. During

exploration, once Snowcap encounters a dependency without im-

mediate effect, it will perform a counter-example-guided search.

Counter-example-guided search. Snowcap’s second search tactic

is based on a divide-and-conquer approach; we split the problem of

finding a valid ordering into smaller sub-problems of finding valid

orderings within the dependency groups.Whenever the exploration

hits a dead end, Snowcap uses that counter-example to identify

the dependency groups and solve them individually, instead of

backtracking (cf. Alg. 1). This works in three main phases Reduce,
Solve, and Extend, which we explain in detail below.

In the following, we use the running example (Fig. 4) and assume

that the input to Alg. 1 is the ordering o = a b c , like in Fig. 5. All

three phases modify an incomplete ordering o of the commands,

which is valid up to its final command. We say that this final com-

mand is problematic (c in the example).

Reduction phase (Alg. 2). The reduction phase aims to find the

minimal set of commands that cause the problem, borrowing ideas

from Delta Debugging [46] and Test Case Reduction [35]. During

Reduce, we remove single commands (except the problematic one)

to check whether they change the outcome. If removing a single

command causes the ordering to become valid, we declare this com-

mand relevant for the current group. On the contrary, if removing

the command does not change the outcome of the oracle, the com-

mand is removed; there does not seem to be a dependency. Example:
Using our running example and the invalid ordering a b c , Snow-
cap first removes command a . Since b c still causes the same

forwarding loop between r1 and r2, a remains removed. The same

applies to b , leaving us with the ordering c .

Algorithm 2: Reduce
Input :Groups G, an ordering o of G and the spec. ϕ

1 i ← 0

2 while i + 1 < o .length do
3 oi ← o with group at position i removed

4 pos ← problematic command of Ei
5 if pos + 1 < oi .length then
6 o′i ← Reduce(G, oi up to position pos)
7 if Recursion depth = 1 then o′i ← o′i .insert(0, i)
8 return o′i
9 else if oi |= ϕ ∨ ϵϕ (oi) , ϵϕ (o) then i ← i + 1

10 else Remove group at position i from o

11 return o

Algorithm 3: Extend
Input :Groups G, an ordering o of G, a set of remaining groups

R and the spec. ϕ
1 for д ∈ R do
2 for j ∈ {0, 1, . . . , o .length − 1} do
3 oд ← o with group д inserted at position j
4 pos ← problematic command of oд
5 if oд ̸ |= ϕ ∧ pos + 1 < oд .length then
6 return Reduce(G, oд)

7 if oд |= ϕ ∨ ϵϕ (oд) , ϵϕ (o) then return oд

8 return ∅

Solving phase. After Snowcap reduces the sequence to just the

relevant commands, it tries to find a valid ordering of them. To this

end, it uses a DFS exploration as described in §4.1. It returns the

resulting ordering as a single group if it succeeds. Otherwise, it

continues with the extension phase. Example: Snowcap realizes that

there exists no valid ordering for c and continues with Alg. 3.

Extension phase (Alg. 3). If Snowcap cannot find a solution for

the reduced ordering, it is a sign that the dependency group is

not yet complete. Hence, it tries to extend the group with a single

command, which it has not yet considered. Alg. 3 goes through

every remaining command and inserts it at every possible position

in the sequence. If the sequence becomes valid or the error changes

(as described in the next paragraph), the algorithm returns the

extended sequence. Example: Snowcap tries to extend the reduced

sequence c , with the yet unconsidered command d . Alg. 3 inserts

d before c , resulting in d c . Hence, the algorithm returns the

extended sequence d c as a dependency group and continues.

Comparing errors. To find the minimal set of commands respon-

sible for a problem, our approach has to determine whether a com-

mand is independent of the current problem or not. During the

reduction phase (Line 9 of Alg. 2, for example), we compare the

outcome of a sequence with and without a specific command. If the

outcome is the same, the command is considered to be independent

of the current problem. To compare the outcome of two different

sequences, it does not suffice to check whether both of them satisfy

the specification or not. One also has to check whether the same

part of the specification is violated, i.e., whether the violation is due

38

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

to the same reason ϵϕ (o) (cf. App. C.2 for a formal definition). This

comparison of the oracle’s result is not just used in Alg. 2, but also

on Line 7 of Alg. 3. Often, removing commands does not solve the

problem but shifts it to a different position. Hence, comparing the

validity and the reason outperforms simple comparison on different

networks and scenarios by several orders of magnitude.

4.3 Optimization
So far, we were only concerned with finding a valid ordering based

on the hard specification ϕ. In the following, we explain how we

can extend Snowcap’s approach to find an optimal ordering by

incorporating the soft specification f .
There existn! different command orderings withn being the total

number of reconfiguration commands.
6
Due to this immensely large

search space, Snowcap does not attempt to find the global optimum.

Instead, it greedily minimizes each step, optimizing only locally,

and hence, finding a local optimum. Instead of taking the first

command that seems to work during the DFS exploration, Snowcap
computes the cost of applying each remaining, valid command

and continues with the one of lowest cost. While not necessarily

finding the optimal solution, we show in our evaluation (§6.2) that

this strategy works well in practice.

5 HARD & SOFT SPECIFICATION
This section discusses the specification guiding Snowcap’s search
for a valid and good ordering of reconfiguration commands in more

detail. The specification consists of two parts: (i) the hard specifica-

tion, which comprises the policies that must not be violated during

the reconfiguration, and (ii) the soft specification, which assigns

a cost to every command ordering and guides Snowcap towards

an optimal one. In the following, we first introduce the language

underlying the hard specification and then discuss techniques to

evaluate the specification. Finally, we present the soft specification.

5.1 Specification Language
In the following, we present our hard specification language and

explain how it differs from traditional specification languages for

networks. The main building blocks consist of the well-known

policies from the verification and synthesis literature: reachability,

isolation, waypointing, and path redundancy. In contrast to prior

work, the specification is dynamic: operators typically reconfigure

the network due to policy changes. Our specification language

(Fig. 6) is therefore based on LTL.

Basic policies. Snowcap supports a set of four basic policies on

the forwarding behavior of the network, which can be combined

according to the operator’s requirements. We model the policies

as predicates defined over a router r , a prefix p, and, except for
isolation, a path condition c , which can hold on a forwarding state s .
For example,V(r ,p,c) holds on s if the path from router r to prefix p

in s satisfies the path condition c . Similarly,V +
(r ,p,c) holds if the path

satisfies the condition under any single link failure. Path conditions

are expressed as restricted regular expressions; (∗ r1 ∗) ∨ (∗ r2 ∗)

6
Due to potential BGP Wedgies [21], the ordering of commands might change the

resulting forwarding state, even if the resulting configuration is the same.

Logical Operators

ϕ ::= true true
| ¬ϕ negation
| ϕ1 ∧ ϕ2 conjunction
| ϕ1 ∨ ϕ2 disjunction
| ϕ1

⊕
ϕ2 xor

| ϕ1 ⇒ ϕ2 implication
| ϕ1 ⇔ ϕ2 if and only if

Temporal Modal Operators

ϕ ::= ϕ1 now
| X ϕ1 next
| F ϕ1 finally
| Gϕ1 globally
| ϕ1U ϕ2 until
| ϕ1Rϕ2 release
| ϕ1W ϕ2 weak until
| ϕ1Mϕ2 strong release

Propositional Variables

ϕ ::= V(r ,p ,c) valid path
| I(r ,p) isolation
| V +

(r ,p ,c) redundancy
| C(r ,p ,c) convergence

behavior

Path Condition

c ::= ¬c negation
| c1 ∧ c2 conjunction
| c1 ∨ c2 disjunction
| x path

x ::= xx sequence
| ri router ri
| ? any router
| ∗ any number of

routers

Figure 6: Definition of the LTL specification language.

requires packets to traverse either router r1 or r2, while (∗ r1 ∗ r2 ∗)
requires packets to traverse r1 before r2.

Temporal dimension. During reconfiguration, the behavior of

the network is changing, and so is the network policy. Therefore,

it is not enough to support a static specification defined over a

single network state. The specification has to be defined over a

sequence of them and needs to reflect configuration changes (e.g.,

to move traffic “gracefully” from an old to a new firewall). Hence,

Snowcap’s specification language is based on LTL (see App. C.1).

The following examples highlight the benefits of using LTL as a

specification language:

• Reachability and redundancy: During the entire reconfiguration
process, every router should be able to reach every prefix, even

under single link failures.

G
∧
(r ,p)∈F

V(r ,p,∗) ∧V
+
(r ,p,∗)

G ϕ (globally) requires the expression ϕ to hold in every single

state during the reconfiguration.

• Firewall migration: All traffic should be migrated from the old

firewall at rold to the new rnew, i.e., traffic should initially go via

rold and switch at one point over to rnew.∧
(r ,p)∈F

V(r ,p,(∗rold∗)) UG V(r ,p,(∗rnew∗))

In LTL, ϕ1 UG ϕ2 requires that ϕ1 holds initially, and in all states

until ϕ2 holds for the remaining states.

• Rerouting of a critical flow: The flow (r ,p) is critical and has to

be migrated from path c− to c+. It is never allowed to take any

other path (not even during convergence).

V(r ,p,c−) U
((
V(r ,p,c+) ∧C(r ,p,c−∨c+)

)
∧XG V(r ,p,c+)

)
In this expression, ϕ1 U (ϕ2 ∧XG ϕ3) requires ϕ1 to hold until

ϕ2 holds for a single, and ϕ3 in all remaining states.

39

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

5.2 Evaluating the Hard Specification
The specification’s dynamic nature brings three additional chal-

lenges: first, evaluating incomplete orderings; second, identifying

the cause for the specification violation; and third, providing guar-

antees during convergence. In the following, we discuss each of the

three points in more detail.

Partial evaluation. As the specification ϕ is defined over a se-

quence of network states, every single one of them must be present

to check whether an ordering satisfies ϕ. It can happen that early

network states violate parts of the specification, which makes it

impossible for any future to be valid. To speed up the search, one

would like to identify and dismiss these cases as soon as possible.

To this end, we rely on partial evaluation of the LTL expression:

we evaluate whether the expression holds weakly on a truncated

sequence [8], i.e., if there exists a possible future in which the

expression holds.

Error comparison. For Algs. 2 and 3, Snowcap needs to under-

stand the exact reason for the specification violation, in order to

determine if two problematic command orderings o1 and o2 violate
ϕ due to the same reason ϵϕ (cf. App. C.2). To this end, we apply

two steps: First, we extract the set of propositional variables, which

need to change in the last state of the sequence o1, in order to make

the LTL expression hold weakly (explained in detail in App. C.2).

Second, for each of these propositional variables, we compare the

actual forwarding path of its corresponding flow (r ,p) in the last

state of the two sequences s1 and s2.

Convergence behavior. A network operator is not only concerned

with the sequence of converged states after every single reconfigu-

ration step, but might also require properties during convergence.

Therefore, the hard specification can contain convergence poli-

cies C(r ,p,c) that must not be violated in any possible intermediate

network state.

Transient effects have already been discussed in the literature

for specific protocols. More precisely, Francois et al. has shown a

method [13] for seamless reconfiguration of link-state IGP protocols

like OSPF. However, no approach has yet been proposed which

solves this problem in the general case. Enumerating all possible

forwarding states that might occur during reconfiguration is nearly

impossible, even if only BGP is considered. Reordering a single BGP

message can result in a completely different convergence process.

Snowcap verifies convergence properties by computing, intu-

itively speaking, the union over all possible forwarding states dur-

ing convergence, which we call the forwarding supergraph. This

supergraph overapproximates the set of all possible forwarding

states during convergence.This presents a sufficient but not neces-

sary condition: our approach guarantees that path conditions are

satisfied, but it cannot guarantee the existence of a problematic

message ordering.We provide a full proof of correctness in App. D.2.

While this approach provides guarantees about the paths traffic

takes, it cannot guarantee the absence of blackholes. Our approach

can be combined with the work of Francois et al. in the special case

of IGP reconfiguration.

To compute the forwarding supergraph Gfsg, Snowcap only ana-

lyzes the network state before and after convergence: s− and s+. For
each route x , our system computes the set of nodes rri(x) which

might learn the route x in either s− or s+ (App. D.1 describes how
to construct rri(x) for BGP). Next, we build the forwarding super-

graph Gfsg by looking at all possibly considered routes for router

v: pcr (v) = {x | v ∈ rri+(x) ∨ v ∈ rri−(x)}. The final graph

Gfsg = (V, Efsg) has an edge (u,v) ∈ Efsg only if there exists a

route x ∈ pcr (u), for whichv ∈ nh−(u, x) ∪nh+(u, x) (with nh(u, x)
being the next hop at router u towards the target advertised in x).
Finally, to provide the convergence guarantees, Snowcap checks

that the condition is satisfied in every possible path in Gfsg from

the source to the target. The process of computing the forward-

ing supergraph Gfsg for the combination of BGP and IGP takes

O(|P| · |R|2), where |P | is the number of prefixes, and |R | is the

number of internal routers in the network. The derivation of this

can be found in App. D.3.

5.3 Soft Specification
There may exist multiple orderings satisfying the hard specifica-

tion, which have varying side-effects, as shown in §2.2. Therefore,

Snowcap also considers a soft specification that guides its search

tactics towards a “good” solution.

The soft specification consists of a cost function f : Sn 7→ R
that maps a sequence of converged network states to a cost. The

sequence of states is given by applying the configuration commands

of the ordering one-by-one. Currently, Snowcap supports traffic

shifts as a cost function, penalizing changes in the forwarding state.

One can easily add any cost function, as long as it is monotonically

increasing (i.e., f ([s0, . . . , sn−1]) ≤ f ([s0, . . . , sn])). Other examples

include, e.g., minimizing the number of routes maintained in the

routing table or preferring orderings with a faster transition. Snow-
cap uses a greedy approach to find a good reconfiguration ordering

with respect to the provided cost function, see §4.3.

Example: Minimize Traffic Shifts. In the following, we highlight

one example of a cost function that penalizes unnecessary traffic

shifts during migration. First, we look at the costs associated with

applying a single command. Then, we combine them to compute

the costs of an entire command ordering. The cost associated with

applying command with index i can be computed using the for-

warding graph nhi−1 of the previous network state si−1 and the

graph nhi of the current state si as follows:

fi =
1

|R | · |P |

∑
r ∈R

∑
p∈P

{
1 if nhi−1(r ,p) , nhi (r ,p)
0 otherwise

Here, R is the set of all internal routers, and P is the set of all

externally advertised prefixes. The function nhi (r ,p) represents the
next hop for prefix p ∈ P chosen by the router r ∈ R in the state

si . The final cost, associated with the entire ordering of length n, is
computed by

FC ([f1, . . . , fn]) =
∑

1≤i≤n
fi

A cost of 0 means, that no router has changed its next hop during

the reconfiguration process, i.e., no traffic shift occurred. If, during

the entire reconfiguration process, the next hop of every prefix on

every router changes exactly once, the cost is 1.

40

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

20 40 60 80 100

0

1

2

Number of commands

Time [s]

Random permutations

Snowcap = Snowcap−

(a) Snowcap scales well in problem size,
i.e., number of commands with straight-
forward dependencies.

5 10 15 20

0

10

20

30

40

Number of dependency groups

Time [s]

Random permutations

Snowcap−

Snowcap

(b) Snowcap’s divide-and-conquer ap-
proach shines when faced with many
complicated dependency groups.

0 8 39 48 66

10
−3

10
−1

10
1

Complexity of ϕ

Time [s]

c = 5

c = 9

c = 13

c = 17

c = 21

c = 25

c = 29

(c) Specification complexity greatly im-
pacts the shape of the search space, and
hence Snowcap’s runtime.

Figure 7: Runtime of Snowcap with respect to three different aspects; number of commands, number of dependency groups,
and complexity of the hard specification.

6 EVALUATION
We now evaluate Snowcap along three dimensions using a proto-

type implementation by comparing it against multiple baselines.

First, we analyze Snowcap’s performance (§6.1) and show that, even

for large reconfigurations, Snowcap finds a valid ordering within

few seconds, which is orders of magnitude faster than the (random)

baseline. We also show that Snowcap’s runtime depends heavily on

the shape of the search space, and only indirectly on the input size

or the complexity of the reconfiguration scenario. Second, we ana-

lyze Snowcap’s effectiveness (§6.2) at optimizing for soft objectives

and the overhead incurred by the greedy optimization. We show

that, in the vast majority of the networks and scenarios, Snowcap
finds orderings that heavily reduce the number of traffic shifts while

suffering from a predictable and acceptable overhead. Third, we

analyze Snowcap’s accuracy (§6.3) in evaluating properties during

convergence. We show that Snowcap’s analysis is sometimes overly

cautious, but never deems a reconfiguration command safe when it

is unsafe.

Implementation. Our implementation consists of ≈ 40 k lines of

Rust code and currently supports: (i) static routes, link-state IGP
protocols like OSPF, and BGP; (ii) the LTL-based hard specification

language as shown in Fig. 6; and (iii) soft specifications to reduce

traffic shifts. Our implementation can easily be extended to support

additional protocols and specification properties. We run all exper-

iments on a server with 64 cores clocked at 2.25GHz and 512GB

of memory. One instance of Snowcap is always assigned a single

thread. In all experiments, we use our own simulator as an oracle,

which is able to verify around 50k states per second on average.

6.1 Scalability of Snowcap
In this section, we look at how Snowcap scales and how its runtime

depends on: (a) the size of the reconfiguration problem, i.e., the

number of reconfiguration commands; (b) the complexity of the

reconfiguration problem, i.e., the number of dependency groups

without immediate effect; and (c) the complexity of the hard speci-

fication ϕ.

Methodology. We compare Snowcap to a random baseline and

Snowcap− which only performs the exploration phase (§4.1) with-

out learning dependencies (§4.2). We run each approach on each

reconfiguration scenario 1 000 times and report the median execu-

tion time.

Reconfiguration size. In the first experiment, we analyze the per-

formance of Snowcap with respect to the reconfiguration size, i.e.,

the number of reconfiguration commands. To this end, we use the

chain gadget (see App. E.1), a variable-size synthetic topology con-

sisting of n routers arranged in a chain, each of which is modified

once during the reconfiguration to change its next hop. There exists

exactly one valid ordering of these n commands, and any mistake

will immediately cause a forwarding loop.

Fig. 7a shows the runtime incurred by the three approaches when

checking for reachability. Snowcap clearly outperforms the random

baseline as only one of then! orderings is valid. Snowcap− performs

identically to Snowcap, as all dependencies can be resolved using

the exploration algorithm.

Reconfiguration complexity. In the second experiment, we in-

spect Snowcap’s performance with respect to the number of depen-

dency groups, i.e., the complexity of the reconfiguration problem.

We use the Bipartite Gadget (see App. E.2), a synthetic topology

built by replicating a small network. The reconfiguration for each

sub-network involves three reconfiguration commands, forming a

dependency group with no immediate effect. In each group, three

orderings out of the possible 3! = 6 are valid. The problem associ-

ated with each replicated network is independent of the others and

can be solved in isolation.

Fig. 7b shows the runtime incurred by the three approaches when

checking for reachability. Here, Snowcap’s divide-and-conquer ap-
proach shines; by identifying and solving the dependency groups

independently, Snowcap clearly outperforms the other approaches.

While the random baseline takes more than 30 seconds to find a

valid ordering for a problem with 15 dependency groups, Snowcap
solves it in less than one second. Snowcap− quickly reaches its

limits as it has to backtrack frequently while solving the entire

problem at once.

41

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

78

0

0.5

1

1.5

2

C
o
s
t
(
T
r
a
ffi
c
S
h
i
f
t
)

76

Baseline: important first Baseline: important last Baseline: random Snowcap

55

0 0.5 1

0%

≈ 45%

≈ 80%

100%

CostSnowcap/CostRandom

C
D
F

0 0.5 ≈ 1.13

0%

15%

≈ 60%

100%

96%

1

CostSnowcap/CostRandom

0 0.5 1

0%

≈ 30%

≈ 60%

100%

CostSnowcap/CostRandom

Double IGP weights (IGPx2) Double local-pref (LPx2) Network Acquisition (NetAcq)

Figure 8: In almost all cases, Snowcap finds an ordering with significantly lower cost (less traffic shifts) than all three baselines,
with higher consistency. The upper plots compare Snowcap with the baselines for different topologies. Below is the CDF of
the median cost ratio between Snowcap and the random baseline.

Specification complexity. In the third experiment, we analyze

the impact of specification complexity on Snowcap’s runtime. We

use the Abilene Network from Topology Zoo with six Forwarding

Equivalence Classes (FECs)
7
, each of which is advertised by two

different eBGP peers. The network consists of 11 routers, which we

reconfigure from a two-level route reflector topology to a single

level, in addition to modifying several link weights. We start with

a simple hard specification which requires reachability for all 66

flows. We then gradually increase the complexity of the specifica-

tion by mandating an increasing number of flows to immediately

switch from the initial to the final path and “stay there”. We run

the experiment for a varying number of commands c: we always
use the 5 commands required for the BGP migration to which we

add a variable number of link weight changes. For example, c = 29

represents the scenario in which 24 link weights are changed.

Fig. 7c shows the runtime of Snowcap (on a logarithmic scale)

with respect to the number of restricted flows and commands. For

simple cases (c ≤ 17), increasing complexity leads to new depen-

dencies, making it harder to find a solution. Especially condition 39

and 48 add complex dependencies. However, for larger scenarios

(c ≥ 25), increasing complexity might reduce the runtime, as it

significantly restricts the search space. The scenario c = 21 exhibits

both: adding condition 8 reduces the runtime by several orders of

magnitude, but adding condition 48 brings new dependencies.

As it is the case for SAT solvers, Fig. 7c shows that Snowcap’s
runtime depends more on the shape of the search space rather than

the complexity of the reconfiguration scenario.

6.2 Effectiveness of Snowcap
We measure Snowcap’s effectiveness to optimize a soft specifica-

tion by comparing its reconfiguration cost with three baselines and

by analyzing the incurred overhead. We show that Snowcap con-

sistently finds good reconfiguration orderings, outperforming the

7
An FEC is a group of prefixes with identical forwarding behavior (cf. [26])

baselines in almost all experiments and we show that the overhead

for the optimization remains bounded.

Methodology. We use a set of 80 topologies from Topology Zoo
8

(each containing between 5 and 82 routers, 34 on average) and

consider four reconfiguration scenarios: doubling all IGP weights

(IGPx2), doubling all local-preferences (LPx2), performing a network

acquisition (NetAcq) (cf. §2.2), and moving from a full mesh iBGP

topology to a single route reflector (FM2RR) (cf. §2.1). In all scenar-

ios, we choose the IGP configuration at random. We always select

the router with the most links as route reflector (following best

practices [20]). Both IGPx2 and LPx2, as well as the two merging

networks in NetAcq, are configured to use a single route reflector.

We then compare Snowcap’s reconfiguration plans with random or-

derings, alongside with two importance-based orderings in which

we order the commands according to the number of flows they

affect in increasing or decreasing order.

Reconfiguration Costs. In Fig. 8, we compare the cost (number

of traffic shifts, cf. §5.3) of Snowcap’s reconfiguration ordering to

those of the three baselines by performing 10 000 runs each. We

show two plots for each scenario: First, we compare the median

cost, along with the 25th and 75th percentile on each topology.

Second, we show the CDF of the ratio between the median cost of

Snowcap and the random approach. Intuitively speaking, the green

area represents how often and by how much Snowcap outperforms

the baseline, and the red area the opposite.

As Fig. 8 clearly highlights, Snowcap outperforms the baselines in

terms of reconfiguration cost except for 3 out of the 209 topologies.

Snowcap performs especially well for IGPx2, where in 80% of the

topologies, it finds a solution at least twice as good as the random

baseline. But also for LPx2 and NetAcq, Snowcap outperforms the

8
Not every topology can be used for every scenario, as they have different topological

requirements. The network acquisition scenario could only be evaluated on 55 of the

80 topologies. Also, few topologies could not be used with the other scenarios.

42

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

79

10
1

10
4

10
7

10
10

Networks from Topology Zoo

E
x
p
l
o
r
e
d
s
t
a
t
e
s

Random permutations

Snowcap (hard spec. only)

Snowcap

Figure 9: Optimizing soft specification comes at the cost of
exploring roughly x2 states as opposed to x .

random baseline in 60% of the cases each. In 4% of the topologies for

LPx2, however, Snowcap incurs 13% higher cost than the random

approach. “Most important first” outperforms “most important last”

in scenario IGPx2, while it is the other way around in scenario

LPx2, highlighting the benefits of using an adaptive approach like

Snowcap’s to accommodate the different scenarios.

Optimization overhead. While Snowcap effectively finds recon-

figuration orderings with low costs, it also matters what overhead

this incurs. Therefore, we measure the number of states explored by

the random baseline and Snowcap with and without soft specifica-

tion. To this end, we consider the scenario FM2RR and measure the

median number of states, along with the 25th and 75th percentile,

over 10 000 runs on 79 different topologies from Topology Zoo.

Fig. 9 shows the number of explored states for all three ap-

proaches on a logarithmic scale. The topologies are ordered by

number of explored states of Snowcap’s “hard spec. only” approach.
The figure clearly shows that the soft specification comes at a cost:

Snowcap explores roughly x2 states compared to x without opti-

mization, which is expected as Snowcap has to explore all possible

commands at every step to find the optimal one. Nevertheless,

Snowcap outperforms the random approach for some topologies

by orders of magnitude while finding better solutions.

6.3 Accuracy of Snowcap
Snowcap relies on a sufficient, but not necessary condition (cf. §5.2)

to provide guarantees on the network state during convergence.

Since it is “only” sufficient, it can be overly careful and deem a safe

convergence process to be unsafe. In the following, we analyze the

accuracy of these guarantees.

Methodology. We use the Switch network from Topology Zoo, a

topology with 30 routers and 61 edges. We select three route reflec-

tors and choose 1000 different IGP configurations. The network has

three neighbors ex , e1, and e2, which all advertise the same FEC.

The route from ex is the least preferred. During reconfiguration,

we remove the eBGP session towards e2. As hard specification, we

require all routers to forward traffic either towards e1 or e2 during
convergence. To evaluate the accuracy, we check the convergence

guarantees (prediction) and simulate 10 000 different, random con-

vergence sequences to see if any sequence violates the requirement

(simulation), resulting in 28 000 data points.

The results show that our prediction matches the simulation

in 78.5% of the scenarios: for 57.6% of them Snowcap correctly

assesses their safety; for 20.9% of them Snowcap correctly detects

a violation. For the remaining 21.5% scenarios, Snowcap is too

conservative: it sees a potential violation, even though no simulated

convergence procedure violates the condition. This experiment

shows that our condition is effective and most importantly, never

considers a convergence process to be safe, when it is not.

7 CASE STUDY
We demonstrate Snowcap’s practicality using an end-to-end imple-

mentation interfacing with a virtualized network using GNS3 [14]

and FRRouting [41]. We use the Hibernia Ireland topology from

Topology Zoo, a network with six routers. The reconfiguration in-

volves moving from an iBGP full mesh to a route reflector topology

(FM2RR), involving 15 commands.

For this case study, every router has a client connected to it,

which continually sends packets towards all five external networks.

We measure the number of packets lost during the reconfiguration.

As a baseline, we apply all commands in random order and wait

two seconds between each command, regardless of convergence.

In total, around 50% of the traffic is lost during the 40 seconds it

takes to apply all 15 commands. In comparison, when using the full

pipeline of Snowcap without human intervention (i.e., Snowcap’s
runtime controller applies the sequence synthesized by our search

tactics), the reconfiguration takes around 80 seconds, dropping

only around 2% of the total traffic. These blackholes are caused by

a specific behavior of FRR routers, which close a BGP session upon

tagging a neighbor as a route reflector client. Without additional

temporary safeguards (e.g., static routes), these problems cannot

be avoided on FRRouting.

8 DISCUSSION
We now discuss some operational aspects of Snowcap including

its complexity and completeness; and how to deal with impossible

scenarios or failures during the reconfiguration.

Complete exploration. Snowcap is able to quickly find a valid

solution for the vast majority of reconfiguration scenarios. This

is achieved by aggressively pruning the search space using the

counter-example-guided approach (§4.2). In few cases though, this

approach might rule out valid solutions, potentially requiring Snow-
cap to exhaustively explore the search space (§4.1) instead. One

example in which exhaustive exploration happens is when the con-

figuration exhibits more than one stable state (i.e., the network

contains one or more “BGP Wedgies” [21]); and (ii) any invalid

ordering produces exactly the same error, preventing the Reduce
phase (Alg. 2) to remove any commands.

While possible (we provide a theoretical example of the situa-

tion in App. F), we argue that these conditions are not practical—

especially because they entail an incorrect BGP configuration to

start with—and also did not manifest themselves in any of the prac-

tical reconfiguration scenarios we considered. Also, we stress that

43

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

even in these unlikely scenarios, Snowcap works (it is complete)—

albeit more slowly.

Impossible reconfigurations. It may be impossible to directly tran-

sition from the initial to the final configuration without violating

the hard specification. In such situations, Snowcap is not able to

find a safe ordering. To overcome the critical steps during the re-

configuration, one can introduce temporary configurations such

as static routes. Finding the right temporary configurations is a

difficult problem as one also needs to keep the network’s resiliency

(e.g., link failures) in mind. We plan to address this in future work.

Outages during reconfiguration. Networks are constantly faced

with the possibility of unexpected outages, which can also happen

during reconfiguration. Our specification language allows operators

to express redundancy, i.e., that conditions still apply even if links

in the network fail. This inherently solves the problem, without the

need for control.

9 RELATEDWORK
Network management automation. To reduce operator-induced

downtimes, several systems have been proposed to automate net-

work management [29, 38, 40]. These systems automate configura-

tion generation and deployment for network operators. In addition,

they monitor the network state during updates to react upon anom-

alies. Snowcap can extend these systems by providing a safe recon-

figuration ordering, eliminating potential anomalies and human

interventions during the updates.

Network migrations. Researchers have put extensive focus on the
special case of IGP migrations. Francois et al. [11, 13] have shown

how to avoid transient forwarding loops in link-state protocols,

such as OSPF or IS-IS, by updating the routers in a specific order and

progressively changing the link weights. Raza et al. [34] extended

this approach by allowing to optimize for certain metrics during

the reconfiguration (e.g., minimize link utilization).

Several systems build upon the technique known as Ships-In-

The-Night [3, 25, 42–45], where each router is running two separate

configurations in parallel. The new configuration runs in the back-

ground and the transition happens once it has converged. All these

approaches pose particular requirements to the hard- and software

of network devices as they need to support multiple routing and

forwarding tables at the same time.

SDN updates. Several works looked at safe transitions from one

configuration to another in the context of SDN [24, 31, 32]. While

the problem is similar, the solution differs vastly as reconfiguration

in SDN means updating the forwarding state directly. The work of

McClurg et al. [32] takes a similar approach as Snowcap: it finds
an ordering of data plane updates using counter-examples.

The Routing Control Platform (RCP) [7] combines ideas from

SDN with traditional, distributed networking to solve the problem

of network-wide configuration updates. It does so by logically-

centralizing the routing information and performing the route se-

lection on behalf of the routers. Approaches like RCP require drastic

changes to the network-wide configuration and topology, and have

several side-effects. Snowcap, however, can be used with traditional

networks without the need for any adaptation of the network.

Network configuration repair. CPR [15] and AED [1] synthesize

configuration repairs for a given configuration such that it meets

the operator’s specification. AED can also take management and

operational objectives into account, such as minimizing the number

of devices affected by the repair or the total number of configura-

tion changes. Snowcap complements these systems as it can apply
their repairs without violating the specification during the recon-

figuration. Concretely, one could use AED to synthesize the final

configuration, and then Snowcap to safely transition to it.

Abstract control plane representation. Tiramisu [2] and ARC [16]

use an abstract graph representation of the control plane to ana-

lyze network configurations. Snowcap’s convergence guarantees
(§5.2) rely on a similar approach using a graph representation of

the transient forwarding state. Its accuracy might be improved by

incorporating control plane information like ARC does.

10 CONCLUSION
We presented Snowcap, the first protocol-agnostic system to syn-

thesize safe network-wide configuration updates in distributed

control planes by phrasing the problem as an optimization problem

under constraints. We introduced a precise and dynamic specifi-

cation language based on LTL to allow operators to specify the

transition from the old to the new high-level policy. We further

proposed search tactics which leverage counter-examples to isolate

command dependencies and resolve them independently. Finally,

we demonstrated Snowcap’s scalability and effectiveness: Snowcap
finds good reconfiguration plans for realistic network topologies

and reconfiguration scenarios in few seconds.

Ethical issues. This work does not raise any ethical issues

ACKNOWLEDGEMENTS
We thank our shepherd Lixin Gao and the anonymous reviewers

for their insightful comments and helpful feedback. The research

leading to these results was supported by an ERC Starting Grant

(SyNET) 851809.

44

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

AED: Incrementally Synthesizing Policy-Compliant and Manageable Configura-

tions. In ACM CoNEXT. Barcelona, Spain.
[2] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast Multilayer Network Verification. In USENIX NSDI. Santa Clara,
CA.

[3] Richard Alimi, Ye Wang, and Y. Richard Yang. 2008. Shadow Configuration as a

Network Management Primitive. In ACM SIGCOMM. Seattle, WA, USA.

[4] T. Bates, E. Chen, and R. Chandra. 2006. RFC 4456: BGP Route Reflection: An
Alternative to Full Mesh Internal BGP (IBGP). Technical Report.

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General

Approach to Network Configuration Verification. InACMSIGCOMM. Los Angeles,

CA, USA.

[6] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.

2019. Don’t Mind the Gap: Bridging Network-Wide Objectives and Device-Level

Configurations: Brief Reflections on Abstractions for Network Programming.

ACM SIGCOMM CCR 49, 5 (2019), 104–106.

[7] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,

and Jacobus van der Merwe. 2005. Design and Implementation of a Routing

Control Platform. In USENIX NSDI. Boston, MA, USA.

[8] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and

David Van Campenhout. 2003. Reasoning with Temporal Logic on Truncated

Paths. In CAV. Boulder, CO, USA.
[9] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. 2018. Survey of

Consistent Software-Defined Network Updates. IEEE Communications Surveys &
Tutorials 21, 2 (2018), 1435–1461.

[10] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd D Millstein. 2015. A General Approach to Network

Configuration Analysis.. In USENIX NSDI. Oakland, CA, USA.
[11] Pierre Francois and Olivier Bonaventure. 2007. Avoiding Transient Loops During

the Convergence of Link-State Routing Protocols. IEEE/ACM Transactions on
Networking 15, 6 (2007), 1280–1292.

[12] P. Francois, O. Bonaventure, B. Decraene, and P. Coste. 2007. Avoiding Disrup-

tions during Maintenance Operations on BGP Sessions. IEEE Transactions on
Network and Service Management 4, 3 (2007), 1–11.

[13] Pierre Francois, Mike Shand, and Olivier Bonaventure. 2007. Disruption Free

Topology Reconfiguration in OSPF Networks. In IEEE INFOCOM. Barcelona,

Spain.

[14] Galaxy Technologies, LLC. [n. d.]. GNS3 | The software that empowers network

professionals. https://www.gns3.com/. ([n. d.]). Accessed: 2021-01-23.

[15] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and Hongqiang Harry

Liu. 2017. Automatically Repairing Network Control Planes Using an Abstract

Representation. In ACM SOSP. Shanghai, China.
[16] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.

2016. Fast Control Plane Analysis Using an Abstract Representation. In ACM
SIGCOMM. Florianopolis, Brazil.

[17] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya Akella, and Ratul Maha-

jan. 2015. Management Plane Analytics. In ACM IMC. Tokyo, Japan.
[18] Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: An

Intermediate Language for Verification of Network Control Planes. In ACM PLDI.
London, UK.

[19] V. Gill and J. Mitchell. 2003. AOL Backbone OSPF-ISIS Migration. NANOG29

Presentation. (2003).

[20] Barry Raveendran Greene and Philip Smith. 2002. Cisco ISP Essentials. Cisco
Press.

[21] T. Griffin and G. Huston. 2005. RFC 4264: BGP Wedgies. Technical Report.
[22] Timothy G Griffin and Gordon Wilfong. 2002. On the Correctness of IBGP

Configuration. In ACM SIGCOMM. Pittsburgh, PA, USA.

[23] Gonzalo Gomez Herrero and Jan Antón Bernal Van der Ven. 2011. Network
Mergers and Migrations: Junos Design and Implementation. Vol. 45. John Wiley &

Sons.

[24] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,

Ming Zhang, Jennifer Rexford, and RogerWattenhofer. 2014. Dynamic Scheduling

of Network Updates. In ACM SIGCOMM. Chicago, IL, USA.

[25] John P John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas Anderson, and

Arun Venkataramani. 2008. Consensus Routing: The Internet as a Distributed

System. In USENIX NSDI. San Francisco, CA, USA.

[26] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In USENIX NSDI. San Jose, CA, USA.

[27] Hyojoon Kim, Theophilus Benson, Aditya Akella, and Nick Feamster. 2011. The

Evolution of Network Configuration: A Tale of Two Campuses. In ACM IMC.
Berlin, Germany.

[28] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. The

Internet Topology Zoo. IEEE JSAC 29, 9 (2011), 1765 –1775.

[29] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang, Hui Xu, Lei

Zhou, Qing Ma, and Ming Zhang. 2018. Automatic Life Cycle Management of

Network Configurations. In ACM SelfDN. Budapest, Hungary.
[30] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P

Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. Crystalnet:

Faithfully Emulating Large Production Networks. InACM SOSP. Shanghai, China.
[31] Ratul Mahajan and Roger Wattenhofer. 2013. On Consistent Updates in Software

Defined Networks. In ACM HotNets. College Park, MD, USA.

[32] Jedidiah McClurg, Hossein Hojjat, Pavol Černỳ, and Nate Foster. 2015. Efficient

Synthesis of Network Updates. In ACM PLDI. Portland, OR, USA.
[33] Bruno Quoitin and Steve Uhlig. 2005. Modeling the Routing of an Autonomous

System with C-BGP. IEEE Network 19, 6 (2005), 12–19.

[34] Saqib Raza, Yuanbo Zhu, and Chen-Nee Chuah. 2011. Graceful Network State

Migrations. IEEE/ACM Transactions on Networking 19, 4 (2011), 1097–1110.

[35] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-Case Reduction for C Compiler Bugs. In ACM PLDI. Beijing,
China.

[36] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Höl-

zle, Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos

Topologies and Centralized Control in Google’s Datacenter Network. In ACM
SIGCOMM. London, United Kingdom.

[37] P. Smith. 2010. BGP Techniques for Internet Service Providers. NANOG50

Presentation. (2010).

[38] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan

Arefin. 2014. A Network-State Management Service. In ACM SIGCOMM. Chicago,

IL, USA.

[39] Yu-Wei Eric Sung, Sanjay Rao, Subhabrata Sen, and Stephen Leggett. 2009. Ex-

tracting Network-wide Correlated Changes from Longitudinal Configuration

Data. In PAM. Seoul, Korea.

[40] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi Zeng. 2016.

Robotron: Top-downNetworkManagement at Facebook Scale. InACMSIGCOMM.

Florianopolis, Brazil.

[41] The Linux Foundation. [n. d.]. FRRouting. https://frrouting.org/. ([n. d.]). Ac-
cessed: 2021-01-23.

[42] Laurent Vanbever, Stefano Vissicchio, Luca Cittadini, and Olivier Bonaventure.

2013. When the Cure is Worse than the Disease: The Impact of Graceful IGP

Operations on BGP. In IEEE INFOCOM. Turin, Italy.

[43] Laurent Vanbever, Stefano Vissicchio, Cristel Pelsser, Pierre Francois, and Olivier

Bonaventure. 2011. Seamless Network-Wide IGP Migrations. In ACM SIGCOMM.

Toronto, Ontario, Canada.

[44] Laurent Vanbever, Stefano Vissicchio, Cristel Pelsser, Pierre Francois, and Olivier

Bonaventure. 2012. Lossless Migrations of Link-State IGPs. IEEE/ACM Transac-
tions on Networking 20, 6 (2012), 1842–1855.

[45] Stefano Vissicchio, Laurent Vanbever, Cristel Pelsser, Luca Cittadini, Pierre Fran-

cois, and Olivier Bonaventure. 2012. Improving Network Agility with Seam-

less BGP Reconfigurations. IEEE/ACM Transactions on Networking 21, 3 (2012),

990–1002.

[46] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-

Inducing Input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

45

https://www.gns3.com/
https://frrouting.org/

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A NETWORK ACQUISITION CASE STUDY
To study the impact of different reconfiguration plans on the recon-

figuration costs and to evaluate Snowcap, we studied the network

acquisition scenario [23], in which two networks are merged. For

this scenario, we automatically and randomly partition the network

into two distinct connected components, where both are connected

to at least one external device. For each of these components, we

choose a single route reflector based on the router with the highest

degree, and choose all link weights randomly. All external routers

advertise each of the 5 different FECs with probability 50%. Every

generation is seeded, such that statistics correspond to the same

configuration and can be compared.

Initial configuration. Initially, every router has an iBGP session

with the route reflector of its component. In addition, all links

connecting the two components are disabled. All link weights of

the second network are scaled down by a factor of 10.

Reconfiguration. During the reconfiguration, we enable the links
connecting the two networks and scale up the link weights of the

one network by a factor of 10, to match the range of the other.

Additionally, we connect the two route reflectors as iBGP peers.

Results. Fig. 10 shows the full results of performing the reconfig-

uration on 42 networks from Topology Zoo. Since not all networks

in the Topology Zoo collection contain two external devices, con-

nected to different internal routers, we could not use every network.

B DEPENDENCIES WITHOUT IMMEDIATE
EFFECT

Intuitively, dependencies without immediate effect are violations

caused by configuration commands early in the reconfiguration

process that do not manifest themselves until several commands

later. Formally, we define them as follows:

Definition B.1 (Dependencies without immediate effect). let Q be a

set of commands, and ϕ be the specification. Then,G ⊆ Q contains

dependencies with no immediate effect, iff there exists a subset

д ⊂ G and an ordering oд ∈ P(д) (where P(·) is the set of all

possible permutations), for which the following two conditions

hold:

(1) oд |=ϕ ,
(2) ∀o′д ∈ P(G \ д) : (oд + o

′
д ̸ |= ϕ,

(3) ∃o ∈ P(G) : o |= ϕ.

Based on the Definition B.1, we can see that if there exists such

a dependency G, and if the ordering oд is explored first, then the

simple exploration algorithm (§4.1) needs to backtrack until the de-

pendency is solved. The example reconfiguration, depicted in Fig. 4,

contains a dependency without immediate effect. The sequence

a b |= ϕ is valid, but for both options: a b c ̸ |= ϕ and a b d ̸ |= ϕ.
Hence, the simple exploration algorithm needs to backtrack, until

the problem is solved (which is the case for the sequence d c a b

|= ϕ).

0 1 2

WideJpn
VisionNet

Vinaren
Uunet
Uran

Uninett2011
UniC

SwitchL3
Sanet
Rhnet

Restena
Renater2010

Missouri

Jgn2Plus
Janetlense

Istar

IowaStatewideFiberMap
Internode

Iij
HiberniaUk

HiberniaNireland
HiberniaCanada

Harnet
GtsRomania

GtsHungary
GtsCzechRepublic

Garr201201
Funet

Fatman
Esnet

Dfn
Cwix

Chinanet
Cesnet201006

Canerie
BtNorthAmerica

BtEurope
BtAsiaPac

BsonetEurope
BeyondTheNetwork

Belnet2006
Airtel

Cost (traffic shifts)

Random order Ideal cost

Figure 10: The reconfiguration costs of a random order com-
pared to the ideal costs. This is an extended version of Fig-
ure 3.

46

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

C SPECIFICATION
C.1 Linear Temporal Logic
In the following, we describe all modal operators in LTL, and how

to evaluate them on a sequence of statesw :

• ϕ: The expression ϕ holds in the current state.

• Xϕ (neXt): The expression ϕ holds in the next state.

• Fϕ (Finally): The expressionϕ must hold in either the current

state, or any of the future states.

• Gϕ (Globally): The expression ϕ must hold in the current

state and all future states.

• ψ U ϕ (Until): The expressionψ must hold, until the expres-

sion ϕ holds. ϕ must hold eventually. In the state, where ϕ
holds,ψ is not required to hold too.

• ψ R ϕ (Release): The expression ϕ must hold, until the ex-

pressionψ holds. The expression still evaluates to true , ifψ
never holds, but ϕ holds indefinitely. In the state, where ϕ
holds,ψ must hold too.

• ψ W ϕ (Weak until): The expressionψ must hold, until the

expression ϕ holds. The expression still evaluates to true , if
ϕ never holds, butψ holds indefinitely. In the state, where ϕ
holds,ψ is not required to hold too.

• ψ M ϕ (strong release): The expression ϕ must hold, until

the expressionψ holds.ψ must hold eventually. In the state,

where ϕ holds,ψ must hold too.

C.2 Error Comparison with LTL
For comparing errors, we wish to extract a reason for why an LTL

expression ϕ does not hold weakly for a given sequence of states

w . In the following, we will denote a (partial) sequence of states

w = (s1, s2, . . . , sn), which has a finite length |w | = n. w |= ϕ
denotes that ϕ holds weakly on w . We denote wi = (si) to be the

state ofw at position i , andwi ..j = (si , si+1 . . . , sj) to be the partial
sequence ofw .

Assumewe are given a sequencew , with |w | = n, wherew ..n−1 |=

ϕ, butw ̸ |= ϕ. We define the reason for a sequencew to be a set of

propositional variables, which, if changed in the last state wn
of

w to form w∗, w∗ |= ϕ. Note, there must exist at least one set of

propositional variables, for which the statement before holds, since

w ..n−1 |= ϕ. More formally:

Definition C.1 (reason). Given ϕ, and a sequencew with |w | = n,
wherew ..n−1 |= ϕ, butw ̸ |= ϕ. The reason ϵϕ (w) forw ̸ |= ϕ is given

by:

ϵϕ (w) =
⋃{

p ⊆ wn | (w ..n−1,wn
p) |= ϕ

}
,

wherewn
p represents a state, similar town

, where the value of all

propositional variables in p have changed.

As an example, assumew = ((x1, x2), (x1,¬x2)). and ϕ = x1 ∧x2.
In this case, w ..1 |= ϕ, but w ̸ |= ϕ. Then, ϵϕ (w) = {x2}, since

w2

x2 = (x1,¬¬x2) causes (w
..1,w2

x2) |= ϕ.

D CONVERGENCE GUARANTEES
D.1 Generating rri(x) for BGP
The condition, presented in §5.2 requires the generation of the route

reachability information rri(x) for each route x in the network. In

the following, we describe how to compute rri(x) for BGP, but
it can easily be generalized to other protocols. We first build the

two directed graphs G±bgp = (V, E
±
bgp) for both the network state

s− before the reconfiguration step, and s+ after the step, where

the edges e ∈ E±bgp are labelled e ∈ {U ,O,D}, corresponding to

different BGP sessions, as described by [22]. Then, for each BGP

route x , we traverse both forwarding graphsG±bgp by following BGP

forwarding rules. For each matching BGP route map, we generate

a new route x ′, which is traversed separately. Then, rri±(x) is the
set of nodes that are reached by x during this traversal.

D.2 Proof of Sufficiency
In the following, we proof that the condition presented in §5.2 is

sufficient, i.e., if there exists a convergence process that result in an

invalid transient network state, then our condition is necessarily

violated.

Definition D.1 (Similar Network States). Two network states s−

and s+ are similar if the following conditions are satisfied:

(1) All routes, that can exist during convergence, are also present

in s+ or s−.
(2) For all routes x , no router v < rri(x) can ever learn x .

With careful construction of rri(·), as described for BGP in

App. D.1, the two states s+ and s− are always similar, if s+ can

be reached from s− by applying a single command.

Lemma D.2. If the two states s− and s+ are similar, then Gfsg
contains every possible path in the network during convergence.

Proof of Lemma D.2. In Gfsg, a node u has an edge to a neigh-

boring nodev if there exists a route which might reachu, and where
the next hop isv . Since s− and s+ are similar, during construction of

Gfsg, we have considered every route in the network by analyzing

only the converged states s− and s+. Hence, there cannot exist a
route, which might reach u during convergence, but is not present

in Gfsg. □

Theorem D.3. If the two states s− and s+ are similar, then our
algorithm for checking convergence guarantees is sufficient.

Proof of Theorem D.3. Due to Lemma D.2, the set of all paths

in Gfsg contains every possible path in the network during conver-

gence. Hence, if the conditions are satisfied on all paths, then there

cannot exist an ordering of messages during convergence, which

violates the condition. □

D.3 Complexity for Convergence Guarantees
To provide the convergence guarantees, Snowcap must first gener-

ate the forwarding supergraph Gfsg, and then enumerate all paths

inGfsg. We traverse both BGP graphsG±bgp in a DFS manner to gen-

erate rri±(x), which takes O(|Ebgp |) = O(|R|
2). Then, constructing

Gfsg for any given prefix p takes O(|R|) time. Finally, enumerating

all simple paths in the Gfsg takes O(|Efsg |) = O(|R|
2) time. Taking

everything together, we can perform the convergence behavior

analysis in O(|P| · |R|2) time.

47

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever

b1 r1 r2 · · · rN bN

lp = 50

lp = 100
p

p

Physical link

p eBGP Session

(prefix p)

iBGP Session

(route reflector)

iBGP Session

(new session)

Figure 11: Chain gadget with N routers in the chain.

t1 t2

r1 r2

p p

Physical link

p eBGP Session

(prefix p)

iBGP Session

(route reflector)

iBGP Session

(peer)

Figure 12: Unstable Gadget, where the order of advertise-
ment changes the final forwarding state.

E SYNTHETIC GADGETS
E.1 Chain Gadget
The chain gadget (see Fig. 11) consists of N + 2 routers, connected
in a single chain. The two routers at the end are border routers,

receiving the same external prefix. The router b1 sets the local-pref
to 50, while bN sets the local-pref to 100. In the initial configuration,

all routers only have an iBGP session with b1 and consequently

use it as egress router. During the reconfiguration, we add an iBGP

session from every router to bN . Since bN announces a route with

higher preference, all routers will choose it as egress in the end.

The only valid command ordering is adding the BGP sessions

from right to left, first adding the session bN → rN , followed by

bN → rN−1, etc. If ri is reconfigured before ri+1, then there will be

a forwarding loop between ri and ri+1.

E.2 Bipartite Gadget
The Bipartite Gadget, depicted in Fig. 13, is based on replicating a

smaller gadget, the Unstable Gadget (see Fig. 12), multiple times. The

Unstable Gadget represents one dependency group and consists of

three reconfiguration commands: a adds the iBGP sessionu1 → t1,
b adds u2 → t2, and c removes b2 → r2.
If command a is executed first, both t1 and t2 will choose b1 as

egress, but if b is applied before a, then both t1 and t2 will choose
b2. Then, applying c will force r2 to choose bx as an egress, and

hence, cause a forwarding loop between r2 and t1 if and only if b

is executed before a . Hence, the following three sequences a b c ,

a c b and c a b don’t cause a forwarding loop. However, b a c ,

b c a and c b a cause forwarding loops.

bx

t1 t2

r1 r2

b1 b2u1 u2
G1

10 10

p p

p

a b

c

G2

GN

. .
.

Figure 13: Bipartite Gadget with N groups of size 2. Two ses-
sions a and b are added during reconfiguration, and the
session c is removed.

F EXHAUSTIVENESS OF SNOWCAP
In the following, we highlight the conditions under which the

divide-and-conquer approach (cf. §4.2) cannot find a solution. In

these cases, Snowcap falls back to the exploration tactic (cf. §4.1),

such that Snowcap remains exhaustive. First, we list all necessary

conditions for such a case, and construct a theoretical example.

Since the exploration phase is exhaustive as long as no depen-

dency group has been learned, the bad scenario needs to contain

at least two dependencies. The group, that is learned first (called

д1), must be included in the second one (called д2). Next, an already

learned group is never split up into different groups, it may only

be reordered during the Solve phase. A bad scenario must therefore

prevent the system from entering the Solve phase with the complete

set of commands required for the dependency to be solved. Hence,

any invalid ordering must produce the exact same error, such that

critical commands are removed during Reduce. Also, since the explo-
ration phase may try every possible ordering of the learned groups,

the group д2 must contain the commands from д1, but in a different

order than д1. Hence, a BGP Wedgie [21] needs to be present.

An example of such a case consists of three commands a , b

and c , with the only valid solution being a c b . There exists a

dependency with immediate effect, namely that a needs to happen

before b . Then, the sequences c and a b c need to produce the

exact same error (as described in App. C.2). Snowcap will either

find the valid ordering initially (with probability 1/6), or learn the

dependency a b first, in which case, our system will not be able to

find a valid solution. Notice, that a BGP Wedgie is present, since

a b c results in a different state than a c b , even though the exact

same configuration is running.

48

Synthesizing Network-Wide Configuration Updates SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

G ARTIFACT APPENDIX
Abstract
Snowcap’s artifact includes its full source code and documentation,

which is available on GitHub. In addition, we provide instructions

on how to build Snowcap, alongside a script to run all experiments

and reproduce the results described in this paper.

Scope
The artifact allows to reproduce all the results and claims made in

this paper. With the provided source code and documentation, one

can also run Snowcap in their own network and extend it.

Contents
The artifact consists of the full source code and all scripts neces-

sary to run Snowcap, conduct every experiment in this paper and

reproduce all the results. In addition, the artifact includes all the

data we used to generate the plots in this paper.

Hosting
Snowcap is publicly available on GitHub

9
. The artifact documen-

tation can be found in the main branch (commit b486620) in the

directory eval_sigcomm2021.

Requirements
Software. Snowcap is built using Rust and requires:

• a stable Rust toolchain (1.49 or higher);

• Python 3.8 or higher (with the packages numpy, pandas and

matplotlib installed);

• a Latex build environment (including pdflatex);

• and GNS3 (gns3-server and gns3-gui).

We provide detailed instructions on how to setup and run the ar-

tifact in the artifact documentation on GitHub. In addition, we

provide a pre-configured virtual machine.

Hardware. We ran all experiments on a server with 64 cores (128

threads). It took about a week (approximately 20 000 CPU hours)

to run all experiments. We provide an option to speedup the exper-

iments by reducing the number of iterations, which leads to less

precise data and less accurate statistics (more details can be found

in the artifact documentation).

9
https://github.com/nsg-ethz/snowcap

49

https://github.com/nsg-ethz/snowcap/tree/main/eval_sigcomm2021
https://github.com/nsg-ethz/snowcap/blob/main/eval_sigcomm2021/README.md
https://github.com/nsg-ethz/snowcap/blob/main/eval_sigcomm2021/README.md
https://github.com/nsg-ethz/snowcap

	Abstract
	1 Introduction
	2 Motivation
	2.1 Case Study: ibgp Reconfiguration
	2.2 Case Study: Network Acquisition

	3 Overview
	4 Search Tactics
	4.1 Simple Exploration
	4.2 Finding Dependencies
	4.3 Optimization

	5 Hard & Soft Specification
	5.1 Specification Language
	5.2 Evaluating the Hard Specification
	5.3 Soft Specification

	6 Evaluation
	6.1 Scalability of Snowcap
	6.2 Effectiveness of Snowcap
	6.3 Accuracy of Snowcap

	7 Case Study
	8 Discussion
	9 Related Work
	10 Conclusion
	References
	A Network Acquisition Case Study
	B Dependencies without immediate effect
	C Specification
	C.1 Linear Temporal Logic
	C.2 Error Comparison with LTL

	D Convergence Guarantees
	D.1 Generating rri(x) for BGP
	D.2 Proof of Sufficiency
	D.3 Complexity for Convergence Guarantees

	E Synthetic Gadgets
	E.1 Chain Gadget
	E.2 Bipartite Gadget

	F Exhaustiveness of Snowcap
	G Artifact Appendix

